【題目】如圖,是以為直徑的半圓上異于點(diǎn)的點(diǎn),矩形所在的平面垂直于該半圓所在平面,且

(Ⅰ)求證:;

(Ⅱ)設(shè)平面與半圓弧的另一個(gè)交點(diǎn)為,

求證://;

,求三棱錐E-ADF的體積.

【答案】(1)通過證明,進(jìn)而得到線線垂直的證明。

(2)利用平面的性質(zhì)定理,可知線線平行,體積為

【解析】

試題(1)證明線線垂直,則可轉(zhuǎn)化為線面垂直,由于圓周角的定義,則知,由矩形所在的平面垂直于該半圓所在平面,及面面垂直性質(zhì)定理得,則可得平面平面

根據(jù)垂直的有關(guān)性質(zhì)定理,則可得平面,故

2證明線線平行,則可用過平面的一個(gè)平行線作于該平面相交的平面,則該直線與交線平行由,平面,又由平面平面于直線,則根據(jù)線面平行的性質(zhì)定理得,由平行的傳遞性得則體積可以用多種方法,有直接求法、割補(bǔ)法、轉(zhuǎn)化法,對(duì)于此題可轉(zhuǎn)化后用直接求法,求三棱錐E-ADF先轉(zhuǎn)化;根據(jù)三棱錐的體積公式,則有

試題解析:

是半圓上異于的點(diǎn), ,又矩形所在的平面垂直于該半圓所在平面由面面垂直性質(zhì)定理得平面平面 平面,

2,平面,平面平面于直線,根據(jù)線面平行的性質(zhì)定理得,,②

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺(tái)“延遲退休年齡政策”.為了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

(1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;

(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2人.

①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率.

②記抽到45歲以上的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù):

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司欲生產(chǎn)一款迎春工藝品回饋消費(fèi)者,工藝品的平面設(shè)計(jì)如圖所示,該工藝品由直角和以為直徑的半圓拼接而成,點(diǎn)為半圈上一點(diǎn)(異于),點(diǎn)在線段上,且滿足.已知,設(shè).

1)為了使工藝禮品達(dá)到最佳觀賞效果,需滿足,且達(dá)到最大.當(dāng)為何值時(shí),工藝禮品達(dá)到最佳觀賞效果;

2)為了工藝禮品達(dá)到最佳穩(wěn)定性便于收藏,需滿足,且達(dá)到最大.當(dāng)為何值時(shí),取得最大值,并求該最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了31日至35日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

31

32

33

34

35

溫差(℃)

10

11

13

12

9

發(fā)芽數(shù)(顆)

23

25

30

26

16

1)從31日至35日中任選2天,記發(fā)芽的種子數(shù)分別為,,求事件“”的概率;

2)該小組發(fā)現(xiàn)種子的發(fā)芽數(shù)(顆)與晝夜溫差(℃)呈線性相關(guān)關(guān)系,試求:線性回歸方程.

(參考公式:線性回歸方程中系數(shù)計(jì)算公式.其中,表示樣本均值.

參考數(shù)據(jù):;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)口袋有個(gè)白球,個(gè)黑球,這些球除顏色外全部相同,現(xiàn)將口袋中的球隨機(jī)逐個(gè)取出,并依次放入編號(hào)為,,的抽屜內(nèi).

(1)求編號(hào)為的抽屜內(nèi)放黑球的概率;

(2)口袋中的球放入抽屜后,隨機(jī)取出兩個(gè)抽屜中的球,求取出的兩個(gè)球是一黑一白的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某射擊運(yùn)動(dòng)員每次擊中目標(biāo)的概率都是,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員射擊次至多擊中次的概率:先由計(jì)算器產(chǎn)生之間取整數(shù)值的隨機(jī)數(shù),指定、表示沒有擊中目標(biāo),、、、、表示擊中目標(biāo),因?yàn)樯鋼?/span>次,故以每個(gè)隨機(jī)數(shù)為一組,代表射擊次的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下組隨機(jī)數(shù):

5727 0293 7140 9857 0347 4373 8636 9647 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 6710 4281

據(jù)此估計(jì),射擊運(yùn)動(dòng)員射擊4次至多擊中3次的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)在定義域上的單調(diào)性;

(2)令函數(shù),是自然對(duì)數(shù)的底數(shù),若函數(shù)有且只有一個(gè)零點(diǎn),判斷的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

(1)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;

(2)若 上的最小值為-2,求m的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

(1)求的單調(diào)區(qū)間和極值;

(2)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案