8.已知函數(shù)$f(x)=-\frac{1}{3}{x^3}+b{x^2}+cx+bc$在x=1處有極值$-\frac{4}{3}$,求b,c的值.

分析 先求函數(shù)f(x)的導(dǎo)函數(shù),然后根據(jù)函數(shù)f(x)在x=1處有極值$-\frac{4}{3}$,建立關(guān)于b和c方程組,解之即可.

解答 解:f′(x)=-x2+2bx+c,
f'(1)=-1+2b+c=0
∵f(x)在x=1處有極值-$\frac{4}{3}$,
∴f(1)=-$\frac{1}{3}$+b+c+bc=-$\frac{4}{3}$,
解得:b=1,c=-1,或b=-1,c=3.
經(jīng)驗證b=1,c=-1不滿足題意,舍去.
所以b=-1,c=3.

點評 本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,根據(jù)極值反求函數(shù)解析式,考查利用數(shù)學(xué)知識分析問題、解決問題的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2AD=2CD=2,E是PB上的一點.
(Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)如圖(1),若$\overrightarrow{PE}$=$\frac{1}{3}$$\overrightarrow{PB}$,求證:PD∥平面EAC;
(Ⅲ)如圖(2),若E是PB的中點,PC=2,求二面角P-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.定義:從一個數(shù)列{an}中抽取若干項(不少于三項)按其在{an}中的次序排列的一列數(shù)叫做{an}的子數(shù)列,成等差(等比)的子數(shù)列叫做{an}的等差(等比)子列.
(1)記數(shù)列{an}的前n項和為Sn,已知Sn=n2,求證:數(shù)列{a3n}是數(shù)列{an}的等差子列;
(2)設(shè)等差數(shù)列{an}的各項均為整數(shù),公差d≠0,a5=6,若數(shù)列a3,a5,a${\;}_{{n}_{1}}$是數(shù)列{an}的等比子列,求n1的值;
(3)設(shè)數(shù)列{an}是各項均為實數(shù)的等比數(shù)列,且公比q≠1,若數(shù)列{an}存在無窮多項的等差子列,求公比q的所有值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個班進(jìn)行教改實驗.為了了解教學(xué)效果,期末考試后,陳老師對甲、乙兩個班級的學(xué)生成績進(jìn)行統(tǒng)計分析,畫出頻率分布直方圖(如圖).記成績不低于90分者為“成績優(yōu)秀”.

(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;
甲班(A方式)乙班(B方式)總計
成績優(yōu)秀12420
成績不優(yōu)秀384680
總計5050100
(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為:“成績優(yōu)秀”與教學(xué)方式有關(guān)?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下列表:
喜愛打籃球不喜愛打籃球合計
男生20525               
女生101525
合計302050
已知在全部50人中隨機(jī)抽取1人,抽到喜愛打籃球的學(xué)生的概率為$\frac{3}{5}$.
(1)請將上表補充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過0.005的前提下認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,內(nèi)角A,B,C,的對邊分別為a,b,c,已知向量$\overrightarrow{m}$=(cos$\frac{3π}{2}$,-sin$\frac{3π}{2}$),$\overrightarrow{n}$=(cos$\frac{A}{2}$,sin$\frac{A}{2}$),且滿足|$\overrightarrow{m}$+$\overrightarrow{n}$|=$\sqrt{3}$
(1)求角A的大小;
(2)若b+c=$\sqrt{3}$a,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$y=|{sin({2x-\frac{π}{6}})}|$,以下說法正確的是(  )
A.函數(shù)的最小正周期為$\frac{π}{4}$B.函數(shù)是偶函數(shù)
C.函數(shù)圖象的一條對稱軸為$x=\frac{π}{3}$D.函數(shù)在$[{\frac{2π}{3},\frac{5π}{6}}]$上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知復(fù)數(shù)${z_1}=sinx+λi,{z_2}=({sinx+\sqrt{3}cosx})-i$(λ,x∈R,i為虛數(shù)單位).
(1)若2z1=i•z2,且$x∈({0,\frac{π}{2}})$,求x與λ的值;
(2)設(shè)復(fù)數(shù)z1,z2在復(fù)平面上對應(yīng)的向量分別為$\overrightarrow{O{Z_1}},\overrightarrow{O{Z_2}}$,且$\overrightarrow{O{Z_1}}⊥\overrightarrow{O{Z_2}}$,λ=f(x),求f(x)的最小正周期和單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列每對向量垂直的有( 。⿲
(1)(3,4,0),(0,0,5)
(2)(3,1,3),(1,0,-1)
(3)(-2,1,3),(6,-5,7)
(4)(6,0,12),(6,-5,7)
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案