3.已知A(-m,0),B(m,0)(m>2)若三角形ABC內(nèi)切圓的圓心在直線x=1上運(yùn)動(dòng),則頂點(diǎn)C軌跡方程可能為( 。
A.${x^2}-\frac{y^2}{6}=1$B.${x^2}-\frac{y^2}{6}=1(x>1)$C.$\frac{x^2}{4}-\frac{y^2}{8}=1(x>2)$D.$\frac{x^2}{4}-\frac{y^2}{8}=1$

分析 根據(jù)圖可得:|CA|-|CB|為定值,利用根據(jù)雙曲線定義,所求軌跡是以B為焦點(diǎn),實(shí)軸長為2的雙曲線的右支,從而寫出其方程即得.

解答 解:如圖設(shè)△ABC與圓的切點(diǎn)分別為D、E、F,
則有|AD|=|AE|=m+1,|BF|=|BE|=m-1,|CD|=|CF|,
所以|CA|-|CB|=2<|AB|.
根據(jù)雙曲線定義,所求軌跡是以A,B為焦點(diǎn),實(shí)軸長為2的雙曲線的右支,
方程可能為B.
故選B.

點(diǎn)評 本題考查了內(nèi)切圓的性質(zhì)、雙曲線的定義及其標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆山東濰坊臨朐縣高三10月月考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

,則“”是“”的( )

A.必要不充分條件 B.充分不必要條件

C.充分必要條件 D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

一個(gè)空間幾何體的三視圖如圖所示,其中正視圖為等腰直角三角形,側(cè)視圖與俯視圖為正方形,則該幾何體的體積為( )

A.64 B.32

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知橢圓$\frac{x^2}{m}+\frac{y^2}{n}=1$過點(diǎn)P(1,2),則m+n的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)g(x)=a(2x-1),h(x)=(2a2+1)1nx,其中a∈R.
(Ⅰ)若直線x=2與曲線y=g(x)分別交于A、B兩點(diǎn),且曲線y=g(x)在點(diǎn)A處的切線與曲線y=h(x)在點(diǎn)B處的切線相互平行,求a的值;
(Ⅱ)令f(x)=g(x)+h(x),若f(x)在[$\frac{1}{2}$,1]上沒有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.($\sqrt{x}$-$\frac{1}{x}$)5的二項(xiàng)展開式中,含x的一次項(xiàng)的系數(shù)為-5(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)=lnx-2x+6,則f(x)零點(diǎn)的個(gè)數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|-5+21x-4x2<0},B={x∈Z|-3<x<6},則(∁RA)∩B的元素的個(gè)數(shù)為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,又點(diǎn)$A({1,\sqrt{2}})$在該橢圓上.
(1)求橢圓E的方程;
(2)若斜率為$\sqrt{2}$的直線l與橢圓E交于不同的兩點(diǎn)B,C,求△ABC的最大面積.

查看答案和解析>>

同步練習(xí)冊答案