14.如圖,三棱柱ABC-A1B1C1中,AC=AA1=2,AB=BC=2$\sqrt{2}$,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1與A1C相交于點D.
(1)求證:BC1⊥平面AA1C1C;
(2)求二面角C1-AB-C的余弦值.

分析 (1)說明過B作平面AA1C1C的垂線,垂足在AC1上,取AC的中點E,連結(jié)CE,EB,說明過B作平面AA1C1C的垂線,垂足在EC1上,推出垂足是C1.然后證明結(jié)論.
(2)以點D為坐標(biāo)原點,DA、DC、DM分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,分別求出平面ABC1與平面ABC的法向量,從而可算出二面角C1-AB-C的余弦值.

解答 解:(1)∵三棱柱ABC-A1B1C1中,AC=AA1=2,AB=BC=2$\sqrt{2}$,∠AA1C1=60°,
∵AC=AA1,∴AA1=A1C1,
∵∠AA1C1=60°,∴△AA1C1為等腰三角形,
同理△ABC1是等腰三角形,
∵D為AC1的中點,∴BD⊥AC1
∵平面ABC1⊥平面AA1C1C,所以過B作平面AA1C1C的垂線,垂足在AC1上,
三角形ABC是等腰三角形,取AC的中點E,連結(jié)CE,EB,可知BE⊥AC,C1E⊥AC,所以AC⊥平面BEC1,
過B作平面AA1C1C的垂線,垂足在EC1上,可得垂足是C1
∴BC1⊥平面AA1C1C.
(2)由(1)可得C1B=2,以點D為坐標(biāo)原點,DA、DC、DM分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,M為AB的中點,A(1,0,0);B(-1,0,2)C(0,$\sqrt{3}$,0),D(0,0,0),
平面ABC1的一個法向量為$\overrightarrow{m}$=(0,1,0),設(shè)平面ABC的法向量為$\overrightarrow{n}$=(x,y,z),

由題意可得$\overrightarrow{AC}$=(-1,$\sqrt{3}$,0),$\overrightarrow{AB}$=(-2,0,2),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=-x+\sqrt{3}y=0}\\{\overrightarrow{n}•\overrightarrow{AB}=-2x+2z=0}\end{array}\right.$,
所以平面ABC的一個法向量為$\overrightarrow{n}$=($\sqrt{3}$,1,$\sqrt{3}$),
∴cosθ=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}||\overrightarrow{m}|}$=$\frac{1}{1•\sqrt{7}}$=$\frac{\sqrt{7}}{7}$
即二面角C1-AB-C的余弦值等于$\frac{\sqrt{7}}{7}$.

點評 本題在三棱柱中求證線面垂直,并求二面角的平面角大。乜疾榱嗣婷娲怪钡呐卸ㄅc性質(zhì)、棱柱的性質(zhì)、余弦定理、二面角的定義及求法等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下面的莖葉圖表示連續(xù)多天同一路口同一時段通過車輛的數(shù)目,則這些車輛數(shù)的中位數(shù)和眾數(shù)分別是(  )
A.230.5,220B.231.5,232C.231,231D.232,231

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.點M(3,2)到拋物線C:y=ax2(a>0)準(zhǔn)線的距離為4,F(xiàn)為拋物線的焦點,點N(l,l),當(dāng)點P在直線l:x-y=2上運動時,$\frac{|PN|-1}{|PF|}$的最小值為( 。
A.$\frac{3-2\sqrt{2}}{8}$B.$\frac{2-\sqrt{2}}{4}$C.$\frac{5-2\sqrt{2}}{8}$D.$\frac{5-2\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在銳角△ABC中,$\overrightarrow{CM}$=3$\overrightarrow{MB}$,$\overrightarrow{AM}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則$\frac{x}{y}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某校高三文科班150名男生在“學(xué)生體質(zhì)健康50米跑”單項測試中,成績?nèi)拷橛?秒與11秒之間.現(xiàn)將測試結(jié)果分成五組:第一組[6,7];第二組(7,8],…,第五組(10,11].如圖是按上述分組方法得到的頻率分布直方圖.按國家標(biāo)準(zhǔn),高三男生50米跑成績小于或等于7秒認(rèn)定為優(yōu)秀,若已知第四組共48人,則該校文科班男生在這次測試中成績優(yōu)秀的人數(shù)是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.工人在懸掛如圖所示的一個正六邊形裝飾品時,需要固定六個位置上的螺絲,首先隨意擰緊一個螺絲,接著擰緊距離它最遠(yuǎn)的第二個螺絲,再隨意擰緊第三個螺絲,接著擰緊距離第三個螺絲最遠(yuǎn)的第四個螺絲,第五個和第六個以此類推,則不同的固定方式有48種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知三棱錐P-ABC的四個頂點均在半徑為1的球面上,且滿足$\overrightarrow{PA}$$•\overrightarrow{PB}$=0,$\overrightarrow{PB}$$•\overrightarrow{PC}$=0,$\overrightarrow{PC}$$•\overrightarrow{PA}$=0,則三棱錐P-ABC的側(cè)面積的最大值為( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四棱錐P-ABCD中,平面PAD⊥平面ABCD,底面ABCD為等腰梯形,AB∥CD,AD=DC=BC=2,AB=4,△PAD為正三角形.
(Ⅰ)求證:BD⊥平面PAD;
(Ⅱ)設(shè)AD的中點為E,求平面PEB與平面PDC所成二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn),當(dāng)圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計的程序框圖,則輸出的n值為(  )
參考數(shù)據(jù):$\sqrt{3}=1.732$,sin15°≈0.2588,sin7.5°≈0.1305.
A.12B.24C.48D.96

查看答案和解析>>

同步練習(xí)冊答案