14.已知函數(shù)f(x)=|3x-4|.
(Ⅰ)記函數(shù)g(x)=f(x)+|x+2|-4,在下列坐標系中作出函數(shù)g(x)的圖象,并根據(jù)圖象求出函數(shù)g(x)的最小值;
(Ⅱ)記不等式f(x)<5的解集為M,若p,q∈M,且|p+q+pq|<λ,求實數(shù)λ的取值范圍.

分析 (Ⅰ)根據(jù)函數(shù)解析式作出函數(shù)g(x)的圖象,并根據(jù)圖象求出函數(shù)g(x)的最小值;
(Ⅱ)記不等式f(x)<5的解集為M,可得p,q∈(-$\frac{1}{3}$,3),若p,q∈M,且|p+q+pq|<λ,利用絕對值不等式,即可求實數(shù)λ的取值范圍.

解答 解:(Ⅰ)函數(shù)g(x)=f(x)+|x+2|-4=|3x-4|+|x+2|-4,
圖象如圖所示,
由圖象可得,x=$\frac{4}{3}$,g(x)有最小值-$\frac{2}{3}$;
(Ⅱ)由題意,|3x-4|<5,可得-$\frac{1}{3}$<x<3,∴p,q∈(-$\frac{1}{3}$,3),
∴|p+q+pq|≤|p|+|q|+|pq|<3+3+3×3=15,
∴λ≥15.

點評 本題考查函數(shù)的圖象,考查絕對值不等式的運用,考查數(shù)形結合的數(shù)學思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.設函數(shù)f(x)=2x3+3ax2+3bx在x=1及x=2時取得極值,則b的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某統(tǒng)計部門就“A市汽車價格區(qū)間的購買意愿”對100人進行了問卷調(diào)查,并將結果制作成頻率分布直方圖,如圖,已知樣本中數(shù)據(jù)在區(qū)間[10,15)上的人數(shù)與數(shù)據(jù)在區(qū)間[25,30)的人數(shù)之比為3:4.
(Ⅰ)求a,b的值.
(Ⅱ)估計A市汽車價格區(qū)間購買意愿的中位數(shù);
(Ⅲ)按分層抽樣的方法在數(shù)據(jù)區(qū)間[10,15)和[20,25)上接受調(diào)查的市民中選取6人參加座談,再從這6人中隨機選取2人作為主要發(fā)言人,求在[10,15)的市民中至少有一人被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設全集為R,集合A={x|x2-16<0},B={x|-2<x≤6},則A∩(∁RB)等于( 。
A.(-4,0)B.(-4,-2]C.(-4,4)D.(-4,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足$\sqrt{3}$ccos(2016π-B)-bsin(2017π+C)=0.
(Ⅰ)求角B的大小;
(Ⅱ)若點D在△ABC的外接圓上,且CD=5,△ACD的面積為5$\sqrt{3}$,求AC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在平面直角坐標系xoy中,過橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右焦點的直線$x+y-\sqrt{2}=0$交橢圓C于M,N兩點,P為M,N的中點,且直線OP的斜率為$\frac{1}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設另一直線l與橢圓C交于A,B兩點,原點O到直線l的距離為$\frac{{\sqrt{3}}}{2}$,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.將函數(shù)$y=sin(2x+\frac{π}{6})$的圖象向左平移m(m>0)個單位長度,得到函數(shù)y=f(x)圖象在區(qū)間$[-\frac{π}{12},\frac{5π}{12}]$上單調(diào)遞減,則m的最小值為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)$f(x)=4cosωxsin({ωx+\frac{π}{6}})-2({ω>0})$,若函數(shù)相鄰最高點間的距離為π.
(1)求ω及f(x)的對稱中心;
(2)求f(x)在區(qū)間$[{-\frac{π}{6},\frac{π}{4}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)的定義域為[-2,2],且f(x)在[-2,2]上是增函數(shù),f(1-m)<f(m),則實數(shù)m的取值范圍為( 。
A.$(\frac{1}{2},+∞)$B.$(-∞,\frac{1}{2})$C.$({\frac{1}{2},2}]$D.$[{-2,\frac{1}{2}})$

查看答案和解析>>

同步練習冊答案