Processing math: 95%
4.某四棱錐的三視圖如圖所示,則該四棱錐外接球的表面積是( �。�
A.172πB.34πC.17343πD.1734π

分析 由三視圖知該幾何體是一個四棱錐,并畫出對應(yīng)的長方體,由三視圖求出幾何元素的長度,由長方體求出外接球的半徑,由球體的表面積公式求出該四棱錐外接球的表面積.

解答 解根據(jù)三視圖可知幾何體是一個四棱錐P-ABCD,如圖:
且四棱錐P-ABCD是長方體的一部分,AP=4、AB=AD=3,
∴該四棱錐和正方體的外接球相同,設(shè)外接球的半徑是R,
則2R=42+32+32=34,R=342,
∴該四棱錐外接球的表面積S=4πR2=34π,
故選:B.

點評 本題考查三視圖求幾何體外接球的表面積,由三視圖正確復(fù)原幾何體以及幾何體補(bǔ)形是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某三棱錐的正視圖,側(cè)視圖,俯視圖如圖所示,則該三棱錐的表面積是4+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.當(dāng)x∈R+時,可得到不等式x+1x≥2,x+4x2=x2+x2+4x2≥3,由此可推廣為x+Pxn≥n+1,其中P等于( �。�
A.nnB.(n-1)nC.nn-1D.xn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中錯誤的是(  )
A.存在定義在[-1,1]上的函數(shù)f(x)使得對任意實數(shù)y有等式f(cosy)=cos2y成立
B.存在定義在[-1,1]上的函數(shù)f(x)使得對任意實數(shù)y有等式f(siny)=sin2y成立
C.存在定義在[-1,1]上的函數(shù)f(x)使得對任意實數(shù)y有等式f(cosy)=cos3y成立
D.存在定義在[-1,1]上的函數(shù)f(x)使得對任意實數(shù)y有等式f(siny)=sin3y成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={x|y=x25x14},集合B={x|y=lg(-x2-7x-12)},集合C={x|m+1≤x≤2m-1}
(1)求∁R(A∪B);
(2)若A∪C=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.平面直角坐標(biāo)系xOy中,已知圓x2+y2-2y=0,圓心F為拋物線y=12px2的焦點,直線l經(jīng)過點F與拋物線交于A,B兩點,|AB|=5.
(I)求AB中點的縱坐標(biāo);
(Ⅱ)將圓F沿y軸向下平移一個單位得到圓N,過拋物線上一點M(22,m)作圓N的切線,切點分別為C,D,求直線CD的方程和△OCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知等軸雙曲線C的一個焦點坐標(biāo)是(2,0),直線y=kx+b與雙曲線C恰有1個交點,以|k|,|b|,1為邊長的三角形的形狀是( �。�
A.等腰三角形B.直角三角形
C.等腰或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知α、β∈(0,π),且cosα=1010,cosβ=55,那么α+β=\frac{3π}{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=xsinx+cosx的導(dǎo)數(shù)是( �。�
A.y′=2sinx+xcosxB.y′=xcosxC.y′=xcosx-sinxD.y′=sinx+xcosx

查看答案和解析>>

同步練習(xí)冊答案