2.設(shè)向量$\overrightarrow{a}$$\overrightarrow$、滿足:|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$•($\overrightarrow{a}-\overrightarrow$)=0,則$\overrightarrow{a}$與$\overrightarrow$的夾角是60°.

分析 根據(jù)平面向量的數(shù)量積運算,求出cosθ的值,即可求出夾角θ的大。

解答 解:由|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$•($\overrightarrow{a}-\overrightarrow$)=0,
∴${\overrightarrow{a}}^{2}$-$\overrightarrow{a}$•$\overrightarrow$=0,
即12-1×2×cosθ=0,
解得cosθ=$\frac{1}{2}$;
又θ∈[0°,180°],
∴$\overrightarrow{a}$與$\overrightarrow$的夾角θ是60°.
故答案為:60°.

點評 本題考查了平面向量數(shù)量積的運算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C的中心在原點,焦點在x軸上,離心率$e<\frac{{\sqrt{2}}}{2}$.以兩個焦點和短軸的兩個端點為頂點的四邊形的周長為8,面積為$2\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點P(x0,y0)為橢圓C上一點,直線l的方程為3x0x+4y0y-12=0,求證:直線l與橢圓C有且只有一個交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知定義域為R的函數(shù)f(x)既是奇函數(shù),又是周期為3的周期函數(shù),當(dāng)x∈(0,$\frac{3}{2}$)時,f(x)=sinπx,f($\frac{3}{2}$)=0,則函數(shù)f(x)在區(qū)間[0,6]上的零點個數(shù)是( 。
A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.a(chǎn)、b、c是三角形ABC的三邊,設(shè)向量$\overrightarrow P=(a+c,b),\overrightarrow q=(b-a,c-a)$,若$\overrightarrow P∥\overrightarrow q$,則角C大小為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.隨機(jī)變量X~N(9,σ2),P(X<6)=0.2,則P(9<X<12)=(  )
A.0.3B.0.4C.0.4987D.0.9974

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.不等式-6x2-x+2<0的解集是$({-∞,-\frac{2}{3}})∪({\frac{1}{2},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若復(fù)數(shù)z滿足|z|=1,則|($\overline{z}$+i)(z-i)|的最大值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)$f(x)=\frac{-4x+5}{x+1}$,$g(x)=asin(\frac{π}{3}x)+2a$(a>0),若對任意x1∈[0,2],總存在x2∈[0,2],使g(x1)=f(x2)成立,則實數(shù)a的取值范圍是  $(0,\frac{5}{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的各項均是正數(shù),其前n項和為Sn,滿足Sn=4-an(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)${b_n}=\frac{1}{{2-{{log}_2}{a_n}}}$(n∈N*),數(shù)列{bn•bn+2}的前n項和為Tn,求證:${T_n}<\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案