18.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P(x0,$\frac{5}{2}$)為雙曲線上一點(diǎn),若△PF1F2的內(nèi)切圓半徑為1,且圓心G到原點(diǎn)O的距離為$\sqrt{5}$,則雙曲線的方程為(  )
A.$\frac{{x}^{2}}{3}$-$\frac{8{y}^{2}}{25}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{6}$-$\frac{2{y}^{2}}{25}$=1D.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{50}$=1

分析 利用圓心G到原點(diǎn)O的距離為$\sqrt{5}$,求出a,利用等面積,結(jié)合雙曲線的定義,求出P的坐標(biāo),即可得出結(jié)論.

解答 解:設(shè)圓與F1F2,PF1,PF2的切點(diǎn)分別為A,B,D.則OA=a,
故$\sqrt{{a}^{2}+1}$=$\sqrt{5}$,即a=2.
又△PF1F2的面積S=$\frac{1}{2}×2c×\frac{5}{2}$=$\frac{1}{2}$(|F1F2|+|PF1|+|PF2|×1,
∴|PF1|+|PF2|=3c,
∵|PF1|-|PF2|=2a,
∴|PF1|=$\frac{3c+2a}{2}$,|PF2|=$\frac{3c-2a}{2}$,
∵|PF1|=$\sqrt{({x}_{0}+c)^{2}+\frac{25}{4}}$,|PF2|=$\sqrt{({x}_{0}-c)^{2}+\frac{25}{4}}$,聯(lián)立化簡(jiǎn)得x0=3.
P代入雙曲線方程,聯(lián)立解得b=$\sqrt{5}$,
即有雙曲線的方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1.
故選B.

點(diǎn)評(píng) 本題考查雙曲線的方程與性質(zhì),考查直線與圓的位置關(guān)系,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知等比數(shù)列{an}中,a2a4=a5,a4=8,則公比q=2,其前4項(xiàng)和S4=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=-x2+ax.
(I)求函數(shù)f(x)的解析式;
(II)若函數(shù)f(x)為R上的單調(diào)減函數(shù),
①求a的取值范圍;
②若對(duì)任意實(shí)數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知數(shù)列{an}是等比數(shù)列,若${a_2}=1,{a_5}=\frac{1}{8}$,則${a_1}{a_2}+{a_2}{a_3}+…+{a_n}{a_{n+1}}({n∈{N^*}})$的取值范圍是( 。
A.$({\frac{2}{3},2}]$B.$[{1,\frac{8}{3}})$C.$[{2,\frac{8}{3}})$D.$({-∞,\frac{8}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,邊長(zhǎng)為2的等邊三角形ABC中,D為BC的中點(diǎn),將△ABC沿AD翻折成直二面角B-AD-C,點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn).
(1)求證:BC∥平面DEF;
(2)求多面體D-BCEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在長(zhǎng)為5的線段AB上任取一點(diǎn)P,以AP為邊長(zhǎng)作等邊三角形,則此三角形的面積介于$\sqrt{3}$和4$\sqrt{3}$的概率為( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若命題“?x∈R,ax2+4x+a≤0”為假命題,則實(shí)數(shù)a的取值范圍是(2,+∞) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知橢圓的參數(shù)方程為$\left\{\begin{array}{l}{x=2cost+1}\\{y=4sint}\end{array}\right.$,(t為參數(shù)),點(diǎn)M在橢圓上,對(duì)應(yīng)的參數(shù)t=$\frac{π}{3}$,點(diǎn)O為原點(diǎn),則OM的傾斜角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.京劇是我國(guó)的國(guó)粹,是“國(guó)家級(jí)非物質(zhì)文化遺產(chǎn)”,某機(jī)構(gòu)在網(wǎng)絡(luò)上調(diào)查發(fā)現(xiàn)各地京劇票友的年齡ξ服從正態(tài)分布N(μ,σ2),同時(shí)隨機(jī)抽取100位參與某電視臺(tái)《我愛(ài)京劇》節(jié)目的票友的年齡作為樣本進(jìn)行分析研究(全部票友的年齡都在[30,80]內(nèi)),樣本數(shù)據(jù)分別區(qū)間為[30,40),[40,50),[50,60),[60,70),[70,80],由此得到如圖所示的頻率分布直方圖.
(Ⅰ)  若P(ξ<38)=P(ξ>68),求a,b的值;
(Ⅱ)現(xiàn)從樣本年齡在[70,80]的票友中組織了一次有關(guān)京劇知識(shí)的問(wèn)答,每人回答一個(gè)問(wèn)題,答對(duì)贏得一臺(tái)老年戲曲演唱機(jī),答錯(cuò)沒(méi)有獎(jiǎng)品,假設(shè)每人答對(duì)的概率均為$\frac{2}{3}$,且每個(gè)人回答正確與否相互之間沒(méi)有影響,用η表示票友們贏得老年戲曲演唱機(jī)的臺(tái)數(shù),求η的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案