10.若命題“?x∈R,ax2+4x+a≤0”為假命題,則實(shí)數(shù)a的取值范圍是(2,+∞) .

分析 命題“?x∈R,使得ax2+4x+a≤0”為假命題,即ax2+4x+a>0恒成立,
討論a=0時(shí)和a≠0時(shí)求出滿足條件a的取值范圍即可.

解答 解:命題“?x∈R,ax2+4x+a≤0”為假命題,
∴ax2+4x+a>0恒成立,
當(dāng)a=0時(shí),4x>0不恒成立,不滿足題意;
當(dāng)a≠0時(shí),若ax2+4x+a>0恒成立,
則$\left\{\begin{array}{l}{a>0}\\{△=16-{4a}^{2}<0}\end{array}\right.$,
解得a>2,
綜上,a的取值范圍是(2,+∞).
故答案為:(2,+∞).

點(diǎn)評(píng) 本題考查了特稱命題與不等式恒成立問(wèn)題,也考查了轉(zhuǎn)化思想的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.?dāng)?shù)列{an}中,已知a1=1,a2=a,an+1=k(an+an+2)對(duì)任意n∈N*都成立,數(shù)列{an}的前n項(xiàng)和為Sn.(這里a,k均為實(shí)數(shù))
(1)若{an}是等差數(shù)列,求Sn
(2)若a=1,k=-$\frac{1}{2}$,求Sn;
(3)是否存在實(shí)數(shù)k,使數(shù)列{an}是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng)am,am+1,am+2按某順序排列后成等差數(shù)列?若存在,求出所有k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知雙曲線${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$與圓${C_2}:{x^2}+{y^2}={c^2}$(c是雙曲線的半焦距)相交于第二象限內(nèi)一點(diǎn)M,點(diǎn)N在x軸下方且在圓C2上,又F1,F(xiàn)2分別是雙曲線C1的左右焦點(diǎn),若$∠{F_2}NM=\frac{π}{3}$,則雙曲線的離心率為(  )
A.$\sqrt{3}$B.2C.$\sqrt{3}+1$D.$\frac{{\sqrt{3}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P(x0,$\frac{5}{2}$)為雙曲線上一點(diǎn),若△PF1F2的內(nèi)切圓半徑為1,且圓心G到原點(diǎn)O的距離為$\sqrt{5}$,則雙曲線的方程為(  )
A.$\frac{{x}^{2}}{3}$-$\frac{8{y}^{2}}{25}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{6}$-$\frac{2{y}^{2}}{25}$=1D.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{50}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在ABC中,角A,B,C的對(duì)邊分別為a,b,c,若cosA=$\frac{4}{5}$,B=$\frac{π}{3}$,a=3,則b=$\frac{5\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知曲線C1的極坐標(biāo)方程為ρ($\sqrt{2}$cosθ-sinθ)=a,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=sinθ+cosθ\\ y=1+sin2θ\end{array}$(θ為參數(shù)),且C1與C2有兩個(gè)不同的交點(diǎn).
(1)寫(xiě)出曲線C1的直角坐標(biāo)方程和曲線C2的普通方程;
(2)求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,bsinA=$\sqrt{3}$acosB,
(Ⅰ)求角B的大小;
(Ⅱ)若b=3,a=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)是偶函數(shù),定義域?yàn)镽,g(x)=f(x)+2x,若g(log27)=3,則$g({{{log}_2}\frac{1}{7}})$=( 。
A.-4B.4C.$-\frac{27}{7}$D.$\frac{27}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.復(fù)數(shù)$\frac{1-i}{1+i}$(i是虛數(shù)單位)的虛部為( 。
A.-iB.-2iC.-1D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案