【題目】2019年雙十一落下帷幕,天貓交易額定格在268(單位:十億元)人民幣(下同),再創(chuàng)新高,比去年218(十億元)多了50(十億元).這些數(shù)字的背后,除了是消費(fèi)者買買買的表現(xiàn),更是購(gòu)物車?yán)镏袊?guó)新消費(fèi)的奇跡,為了研究歷年銷售額的變化趨勢(shì),一機(jī)構(gòu)統(tǒng)計(jì)了2010年到2019年天貓雙十一的銷售額數(shù)據(jù)y(單位:十億元),繪制如表:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

編號(hào)x

1

2

3

4

5

6

7

8

9

10

銷售額y

0.9

8.7

22.4

41

65

94

132.5

172.5

218

268

根據(jù)以上數(shù)據(jù)繪制散點(diǎn)圖,如圖所示

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為銷售額關(guān)于的回歸方程類型?(給出判斷即可,不必說明理由)

2)根據(jù)(1)的判斷結(jié)果及如表中的數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測(cè)2020年天貓雙十一銷售額;(注:數(shù)據(jù)保留小數(shù)點(diǎn)后一位)

3)把銷售超過100(十億元)的年份叫暢銷年,把銷售額超過200(十億元)的年份叫狂歡年,從2010年到2019年這十年的暢銷年中任取2個(gè),求至少取到一個(gè)狂歡年的概率.

參考數(shù)據(jù):

參考公式:

對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別

【答案】1;(2)見解析;(3

【解析】

1)在散點(diǎn)圖中,樣本點(diǎn)并沒有分布在某一個(gè)帶狀區(qū)域內(nèi),因此這兩個(gè)變量不呈線性相關(guān)關(guān)系,則銷售額關(guān)于的回歸方程類型;

2)令,則,由最小二乘法得出其回歸方程,并預(yù)測(cè)2020年天貓雙十一銷售額;

3)利用列舉法以及古典概型概率公式計(jì)算概率即可.

1)由散點(diǎn)圖可知,適宜作為銷售額關(guān)于的回歸方程類型;

2)令,則,

,

,則關(guān)于的回歸方程為,取,得(十億元).

預(yù)測(cè)2020年天貓雙十一銷售額為324.7(十億元);

32010年到2019年這十年中暢銷年4年,其中狂歡年2年.

從中任取2個(gè),基本事件總數(shù)為6個(gè)

至少取到一個(gè)狂歡年的事件數(shù)為5個(gè)

則至少取到一個(gè)狂歡年的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在寬為的路邊安裝路燈,燈柱高為,燈桿是半徑為的圓的一段劣。窡舨捎缅F形燈罩,燈罩頂到路面的距離為,到燈柱所在直線的距離為.設(shè)為燈罩軸線與路面的交點(diǎn),圓心在線段上.

(1)當(dāng)為何值時(shí),點(diǎn)恰好在路面中線上?

(2)記圓心在路面上的射影為,且在線段上,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且以原點(diǎn)O為圓心,橢圓C的長(zhǎng)半軸長(zhǎng)為半徑的圓與直線相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知?jiǎng)又本l過右焦點(diǎn)F,且與橢圓C交于A、B兩點(diǎn),已知Q點(diǎn)坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)存在兩個(gè)極值點(diǎn),且,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信運(yùn)動(dòng)已成為當(dāng)下熱門的運(yùn)動(dòng)方式,小王的微信朋友內(nèi)也有大量好友參與了微信運(yùn)動(dòng),他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

性別

步數(shù)

02000

20015000

50018000

800110000

10000

1

2

3

6

8

0

2

10

6

2

1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評(píng)定為積極型,否則為懈怠型,根據(jù)題意完成下面的2×2列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為評(píng)定類型性別有關(guān)?

積極型

懈怠型

總計(jì)

總計(jì)

2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計(jì)其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有X人,超過10000步的有Y人,設(shè)ξ|XY|,求E的分布列及數(shù)學(xué)期望.

附:K2,na+b+c+d

PK2k0

0.10

0.05

0.025

0.010

k0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

1)判斷函數(shù):的單調(diào)性;

2)對(duì)于區(qū)間上的任意不相等實(shí)數(shù)、,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)設(shè),

①當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

②當(dāng)時(shí),求證:對(duì)任意恒成立.

2)討論的極值點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱的側(cè)棱垂直于底面, ,點(diǎn)分別是的中點(diǎn).

(1)證明:平面;

(2)設(shè),當(dāng)為何值時(shí),平面,試證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案