2.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+acosx,g(x)是f(x)的導(dǎo)函數(shù).
(1)若f(x)在$(\frac{π}{2},f(\frac{π}{2}))$處的切線方程為y=$\frac{π+2}{2}x-\frac{{{π^2}+4π}}{8}$,求a的值;
(2)若a≥0且f(x)在x=0時(shí)取得最小值,求a的取值范圍;
(3)在(1)的條件下,當(dāng)x>0時(shí),$\sqrt{\frac{{{g^'}(x)}}{2}}+\frac{3}{8}{x^2}>{e^{\frac{x-1}{2}}}$.

分析 (1)先求導(dǎo),根據(jù)導(dǎo)數(shù)和幾何意義即可求出,
(2)先求導(dǎo),再分類討論,根據(jù)導(dǎo)數(shù)和函數(shù)的最值得關(guān)系即可求出參數(shù)的取值范圍,
(3)原不等式轉(zhuǎn)化為cos$\frac{x}{2}$+$\frac{3}{8}$x2>${e^{\frac{x-1}{x}}}$成立,分別根據(jù)均值不等式和導(dǎo)數(shù)和函數(shù)的最值得關(guān)系即可證明.

解答 解:(1)f′(x)=x-asinx,
f′($\frac{π}{2}$)=$\frac{π}{2}$-a=$\frac{π+2}{2}$,
∴a=-1,經(jīng)驗(yàn)證a=-1合題意;
(2)g(x)=f′(x)=x-asinx     g′(x)=1-acosx
①當(dāng)a=0時(shí),f(x)=$\frac{1}{2}$x2,顯然在x=0時(shí)取得最小值,
∴a=0合題意;
②當(dāng)a>0時(shí),
(i)當(dāng)$\frac{1}{a}$≥1即0<a≤1時(shí),g′(x)≥0恒成立,
∴g(x)在(-∞,+∞)上單調(diào)遞增,又g(0)=0
∴當(dāng)x<0時(shí),g(x)<0 即f′(x)<0,當(dāng)x>0時(shí),g(x)>0 即f′(x)>0
∴f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;
∴f(x) 在x=0時(shí)取得最小值
∴當(dāng)0<a≤1時(shí)合題意;
(ii)當(dāng)0<$\frac{1}{a}$<1即a>1時(shí),在(0,π)內(nèi)存在唯一x0=arccos$\frac{1}{a}$使g′(x)=0
當(dāng)x∈(0,x0)時(shí),
∵y=cosx在(0,π)上是單調(diào)遞減的,
∴cosx>cosx0=$\frac{1}{a}$
∴g′(x)=a ($\frac{1}{a}$-cosx)<0,
∴g(x) 在(0,x0)上單調(diào)遞減,
∴g(x)<g(0)=0
即f′(x)<0,
∴f(x)在(0,x0)內(nèi)單調(diào)遞減;
∴x∈(0,x0)時(shí),f(x)<0  這與f(x)在x=0時(shí)取得最小值即f(x)≥f(0)矛盾,
∴當(dāng)a>1時(shí)不合題意;
綜上,a的取值范圍是0,1],
(3)由(1)知,a=-1  此時(shí)g(x)=x+sinx,g′(x)=1+cosx,
∴$\sqrt{\frac{g′(x)}{2}}$=$\sqrt{\frac{1+cosx}{2}}$=|cos$\frac{x}{2}$|≥cos$\frac{x}{2}$,
∴若要證原不等式成立,只需證cos$\frac{x}{2}$+$\frac{3}{8}$x2>${e^{\frac{x-1}{x}}}$成立;
由(2)知,當(dāng)a=1時(shí),f(x)≥f(0)恒成立,即$\frac{1}{2}$x2+cosx≥1恒成立
即cosx≥1-$\frac{1}{2}$x2(當(dāng)且僅當(dāng)x=0時(shí)取“=“號(hào)),
∴cos$\frac{x}{2}$≥1-$\frac{1}{8}$x2(當(dāng)且僅當(dāng)x=0時(shí)取“=“號(hào)) …①
∴只需證:1-$\frac{1}{8}$x2+$\frac{3}{8}$x2>${e^{\frac{x-1}{x}}}$成立,即1+$\frac{1}{4}$x2>${e^{\frac{x-1}{x}}}$,
又由均值不等式知:1+$\frac{1}{4}$x2≥x(當(dāng)且僅當(dāng)x=2時(shí)取“=“號(hào))  …②
∵①②兩個(gè)不等式取“=“的條件不一致,
∴只需證:x≥${e^{\frac{x-1}{x}}}$,
兩邊取對(duì)數(shù)得:lnx≥1-$\frac{1}{x}$…③
下面證③式成立:令ϕ(x)=lnx-1+$\frac{1}{x}$,
則ϕ′(x)=$\frac{1}{x}$-$\frac{1}{x2}$=$\frac{x-1}{x2}$,
∴ϕ(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增
∴ϕ(x)≥ϕ(1)=0,
即lnx-1+$\frac{1}{x}$≥0,
∴l(xiāng)nx≥1-$\frac{1}{x}$,
即③式成立,
∴原不等式成立.

點(diǎn)評(píng) 本題考查利用函數(shù)的最值求參數(shù)問(wèn)題,以及不等式的證明,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意分類討論思想和等價(jià)轉(zhuǎn)化思想及導(dǎo)數(shù)性質(zhì)的合理運(yùn)用,屬于難題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求下列函數(shù)的定義域
(1)y=$\frac{\sqrt{{x}^{2}-3x+4}}{x}$;
(2)y=$\frac{1}{\sqrt{lo{g}_{0.5}(4x-3)}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin(x+$\frac{π}{6}$)-$\frac{1}{2}$cos(x+$\frac{π}{6}$),若存在x1,x2,x3,…,xn滿足0≤x1<x2<x3<…<xn≤6π,且|f(x1)-f(x2)|+|f(x2)-f(x3)|+…$+|{f({{x_{n-1}}})-f({x_n})}|=12({n≥2,n∈{N^*}})$,則n的最小值為( 。
A.6B.10C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{4}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$,則方程f(x)=ax恰有兩個(gè)不同的實(shí)數(shù)根時(shí),實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{e}$)B.[$\frac{1}{4}$,$\frac{1}{e}$)C.(0,$\frac{1}{4}$]D.($\frac{1}{4}$,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知拋物線C:x2=2py(p>0),P,Q是C上任意兩點(diǎn),點(diǎn)M(0,-1)滿足$\overrightarrow{MP}•\overrightarrow{MQ}≥0$,則p的取值范圍是(0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列各區(qū)間中,是函數(shù)f(x)=2cos2x的一個(gè)單調(diào)遞增區(qū)間的為( 。
A.(0,$\frac{π}{2}$)B.($\frac{π}{2}$,π)C.(-$\frac{π}{4}$,$\frac{π}{4}$)D.($\frac{π}{4}$,$\frac{3π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)集合A={x|x(x+1)≤0},集合B={x|2x>1},則集合A∪B等于(  )
A.{x|x≥0}B.{x|x≥-1}C.{x|x>0}D.{x|x>-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的兩條漸近線相互垂直,那么雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知命題p:?x∈R,使sinx-cosx=$\sqrt{3}$,命題q:集合{x|x2-2x+1=0,x∈R}有2個(gè)子集,下列結(jié)論:
①“p∧q”真命題;②命題“p∧¬q”是假命題;③命題“¬p∨¬q”真命題,正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案