5.在區(qū)間[-1,0]上任取兩實數(shù)x、y,則y<3x的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 本題是一個等可能事件的概率,試驗發(fā)生包含的事件是在區(qū)間[-1,0]上任取兩個數(shù)x和y,寫出事件對應(yīng)的集合,做出面積,滿足條件的事件是y<3x,寫出對應(yīng)的集合,做出面積,得到概率.

解答 解:由題意知本題是一個等可能事件的概率,
∵試驗發(fā)生包含的事件是在區(qū)間[-1,0]上任取兩個數(shù)x和y,對應(yīng)的面積是sΩ=1,
滿足條件的事件是y<3x,事件對應(yīng)的集合是A={(x,y)|-1≤x≤0,-1≤y≤0,y<3x}
對應(yīng)的圖形的面積是sA=$\frac{1}{2}×\frac{1}{3}×1$=$\frac{1}{6}$,
∴根據(jù)等可能事件的概率得到P=$\frac{1}{6}$
故選:A.

點評 本題考查等可能事件的概率,是一個幾何概型,幾何概型的概率的值是通過長度、面積、和體積、的比值得到結(jié)果,是一個中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.8把椅子擺成一排,4人隨機就座,任何兩人不相鄰的坐法種數(shù)為( 。
A.144B.120C.72D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某地最近十年對某商品的需求量逐年上升,下表是部分統(tǒng)計數(shù)據(jù):
年份20082010201220142016
需要量(萬件)236246257276286
(1)利用所給數(shù)據(jù)求年需求量y與年份x之間的回歸直線方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)預(yù)測該地2018年的商品需求量(結(jié)果保留整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)f(x)=$\sqrt{-{x}^{2}+2x+3}$-$\sqrt{3}$(x∈[0,2])的圖象繞坐標(biāo)原點逆時針旋轉(zhuǎn)θ (θ為銳角),若所得曲線仍是函數(shù)的圖象,則θ的最大值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,點B是以AC為直徑的圓周上的一點,PA=AB=BC,AC=4,PA⊥平面ABC,點E為PB中點.
(Ⅰ)求證:平面AEC⊥平面PBC;
(Ⅱ)求直線AE與平面PAC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y≥2}\\{ax+y≤4}\\{y≥-1}\end{array}\right.$,目標(biāo)函數(shù)z=3x+y,若a=1,則z的最小值為2;若z的最大值為5,則實數(shù)a=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)f(x)=(x+1)2-alnx在區(qū)間(0,+∞)內(nèi)任取有兩個不相等的實數(shù)x1,x2,不等式$\frac{{f({{x_1}+1})-f({{x_2}+1})}}{{{x_1}-{x_2}}}$>1恒成立,則a的取值范圍是( 。
A.(-∞,3)B.(-∞,-3)C.(-∞,3]D.(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$,g(x)=1-x$+\frac{{x}^{2}}{2}$$-\frac{{x}^{3}}{3}$,設(shè)函數(shù)F(x)=f(x)•g(x),且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b-a的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等比數(shù)列{an}中,2a4-3a3+a2=0,且a1=64,公比q≠1,
(1)求an;
(2)設(shè)bn=log2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案