18.已知$α∈(\frac{π}{2},π)$,且1+tanα≥0,則角α的取值范圍是[$\frac{3π}{4}$,π).

分析 根據(jù)1+tanα≥0求出-$\frac{π}{4}$+kπ≤α<$\frac{π}{2}$+kπ,k∈Z;再根據(jù)α∈($\frac{π}{2}$,π)求出α的取值范圍.

解答 解:1+tanα≥0,
∴tanα≥-1,
解得-$\frac{π}{4}$+kπ≤α<$\frac{π}{2}$+kπ,k∈Z;
又α∈($\frac{π}{2}$,π),
∴取$\frac{3π}{4}$≤α<π,
即α的取值范圍是[$\frac{3π}{4}$,π).
故答案為:[$\frac{3π}{4}$,π).

點評 本題考查了正切函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ex(sinx+cosx).
(1)如果對于任意的x∈[0,$\frac{π}{2}$],f(x)≥kx+excosx恒成立,求實數(shù)k的取值范圍;
(2)若x∈[-$\frac{2015π}{2}$,$\frac{2017π}{2}$],過點M($\frac{π-1}{2}$,0)作函數(shù)f(x)的圖象的所有切線,令各切點的橫坐標(biāo)按從小到大構(gòu)成數(shù)列{xn},求數(shù)列{xn}的所有項之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某電商在6月18日之后,隨機(jī)抽取100名顧客進(jìn)行回訪,按顧客的年齡分成6組,得到如下頻數(shù)分布表:
 顧客年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65]
 頻數(shù) 4 24 32 20 16 4
(1)在表中作出這些數(shù)據(jù)的頻率分布直方圖;
(2)根據(jù)(1)中的頻率分布直方圖,求這100名顧客年齡的平均數(shù);
(3)用分層抽樣的方法從這100名顧客中抽取25人,再從抽取的25人中隨機(jī)抽取2人,求年齡在[25,35)內(nèi)的顧客人數(shù)X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若數(shù)列{an}的通項公式${a_n}=\frac{1}{{{{(n+1)}^2}}}(n∈{N^*})$,記f(n)=(1-a1)(1-a2)…(1-an
(1)計算f(1),f(2),f(3)的值;
(2)由(1)猜想f(n),并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.等比數(shù)列{an}中,前n項和為Sn,a1a9=2a3a6,S5=-62,則a1的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.計算:C30+C41+C52+…+C1613=2380.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若Sn等差數(shù)列{an}的前n項和,且a3=2,a8=10,則S10=60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=x3-3x,函數(shù)f(x)的圖象在x=0處的切線方程是y=-3x;函數(shù)f(x)在區(qū)間[0,2]內(nèi)的值域是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知x,y是正數(shù),且$\frac{1}{x}+\frac{9}{y}=1$,則x+y的最小值是( 。
A.6B.12C.16D.24

查看答案和解析>>

同步練習(xí)冊答案