10.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x∈(-∞,0)時,f(x)=2x3+x2,則f(2)=12.

分析 由已知中當x∈(-∞,0)時,f(x)=2x3+x2,先求出f(-2),進而根據(jù)奇函數(shù)的性質,可得答案.

解答 解:∵當x∈(-∞,0)時,f(x)=2x3+x2
∴f(-2)=-12,
又∵函數(shù)f(x)是定義在R上的奇函數(shù),
∴f(2)=12,
故答案為:12

點評 本題考查的知識點是函數(shù)奇偶性的性質,函數(shù)求值,難度不大,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合P={x|1≤x≤3},Q={x|x2≥4},則P∩(∁RQ)=( 。
A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,已知b=3,$\overrightarrow{AB}•\overrightarrow{AC}$=-6,S△ABC=3,求A和a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=lnx+ln(2-x),則( 。
A.f(x)在(0,2)單調遞增B.f(x)在(0,2)單調遞減
C.y=f(x)的圖象關于直線x=1對稱D.y=f(x)的圖象關于點(1,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|則( 。
A.$\overrightarrow{a}$⊥$\overrightarrow$B.|$\overrightarrow{a}$|=|$\overrightarrow$|C.$\overrightarrow{a}$∥$\overrightarrow$D.|$\overrightarrow{a}$|>|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如圖,在同一個平面內,向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$的模分別為1,1,$\sqrt{2}$,$\overrightarrow{OA}$與$\overrightarrow{OC}$的夾角為α,且tanα=7,$\overrightarrow{OB}$與$\overrightarrow{OC}$的夾角為45°.若$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),則m+n=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若復數(shù)(1-i)(a+i)在復平面內對應的點在第二象限,則實數(shù)a的取值范圍是( 。
A.(-∞,1)B.(-∞,-1)C.(1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.能夠說明“設a,b,c是任意實數(shù).若a>b>c,則a+b>c”是假命題的一組整數(shù)a,b,c的值依次為-1,-2,-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在平面直角坐標系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,橢圓C截直線y=1所得線段的長度為2$\sqrt{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)動直線l:y=kx+m(m≠0)交橢圓C于A,B兩點,交y軸于點M.點N是M關于O的對稱點,⊙N的半徑為|NO|.設D為AB的中點,DE,DF與⊙N分別相切于點E,F(xiàn),求∠EDF的最小值.

查看答案和解析>>

同步練習冊答案