20.已知一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.64+18$\sqrt{3}$B.64+16$\sqrt{3}$C.96D.92-2$\sqrt{3}$

分析 由已知中的三視圖可得:該幾何是一個以俯視圖中大菱形為底面的四棱柱,切去一個以俯視圖中小菱形為底面的四棱柱,得到的組合體,進而得到答案.

解答 解:由已知中的三視圖可得:該幾何是一個以俯視圖中大菱形為底面的四棱柱,切去一個以俯視圖中小菱形為底面的四棱柱,得到的組合體,
其表面積相當(dāng)于大棱柱的表面積,
故S=2×$\frac{1}{2}$×4×4$\sqrt{3}$+4×4×4=64+16$\sqrt{3}$,
故選:B.

點評 本題考查的知識點是棱柱的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$a={π^{\frac{1}{2}}},b={log_π}\frac{1}{2},c={log_{\frac{1}{π}}}\frac{1}{2}$,則( 。
A.a>b>cB.a>c>bC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等差數(shù)列{an}中,a1=13,a4=1,則公差d=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)計算:8${\;}^{\frac{2}{3}}$+($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$-($\sqrt{2}$-1)0;
(2)計算:9${\;}^{lo{g}_{9}2}$+$\frac{1}{3}$log68-2log${\;}_{{6}^{-1}}$$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax-lnx.
(1)過原點O作函數(shù)f(x)圖象的切線,求切點的橫坐標(biāo);
(2)對?x∈[1,+∞),不等式f(x)≥a(2x-x2)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的圖象的一條對稱軸方程是$x=\frac{π}{4ω}$,函數(shù)f'(x)的圖象的一個對稱中心是$({\frac{π}{8},0})$,則f(x)的最小正周期是( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知關(guān)于x的不等式$\frac{lo{g}_{a}x}{lnx}$-$\frac{4}{lnx}$<lnx(a>0且a≠1)對任意的x∈(1,100)恒成立,則實數(shù)a的取值范圍為(0,1)∪(${e}^{\frac{1}{4}}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如果過原點的直線l與圓x2+(y-4)2=4切于第二象限,那么直線l的方程是(  )
A.$y=\sqrt{3}x$B.$y=-\sqrt{3}x$C.y=2xD.y=-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知實數(shù)x,y滿足5x2-y2-4xy=5,則2x2+y2的最小值是2.

查看答案和解析>>

同步練習(xí)冊答案