10.已知$a={π^{\frac{1}{2}}},b={log_π}\frac{1}{2},c={log_{\frac{1}{π}}}\frac{1}{2}$,則( 。
A.a>b>cB.a>c>bC.c>b>aD.c>a>b

分析 利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵a=${π}^{\frac{1}{2}}$>π0=1,
b=$lo{g}_{π}\frac{1}{2}$<logπ1=0,
0=$lo{g}_{\frac{1}{π}}1$<c=$lo{g}_{\frac{1}{π}}\frac{1}{2}$<$lo{g}_{\frac{1}{π}}\frac{1}{π}$=1.
∴a>c>b.
故選:B.

點(diǎn)評(píng) 本題考查三個(gè)數(shù)的大小的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知符號(hào)函數(shù)sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,則函數(shù)f(x)=sgn(lnx)-lnx的零點(diǎn)個(gè)數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知$\overrightarrow{a}$=(3,$\sqrt{3}$),$\overrightarrow$=(1,0),則$\overrightarrow{a}$•$\overrightarrow$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.等比數(shù)列{an}中,a4=2,a5=4,則數(shù)列{lgan}的前8項(xiàng)和等于12lg2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合A={(x,y)|y=2x},B={(x,y)|x2+y2=8},P=A∩B,則集合P中元素有( 。﹤(gè).
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)f(x)=x-lnx+$\frac{ax+b}{{x}^{2}}$,曲線y=f(x)在x=1處的切線為y=2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[1,4]時(shí),證明:f(x)>f′(x)+$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列函數(shù)中是奇函數(shù),且最小正周期是π的函數(shù)是( 。
A.$y=cos({\frac{3π}{2}-2x})$B.y=|cosx|C.$y=sin({\frac{π}{2}+2x})$D.y=|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知直線l1:ax+2y=0與直線l2:x+(a-1)y+a2-1=0平行,則實(shí)數(shù)a的值是(  )
A.-1或2B.0或1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.64+18$\sqrt{3}$B.64+16$\sqrt{3}$C.96D.92-2$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案