10.若變量x,y滿足條$\left\{\begin{array}{l}y≥0\\ x+2y≥1\\ x+4y≤3\end{array}\right.$則z=x2+y2的最小值是( 。
A.0B.$\frac{1}{5}$C.2D.1

分析 由約束條件作出可行域,再由z=x2+y2的幾何意義,即可行域內(nèi)的點(diǎn)與原點(diǎn)距離的平方求得答案.

解答 解:由約束條件$\left\{\begin{array}{l}y≥0\\ x+2y≥1\\ x+4y≤3\end{array}\right.$作出可行域如圖,

由z=x2+y2的幾何意義,即可行域內(nèi)的點(diǎn)與原點(diǎn)距離的平方,
可得z=x2+y2的最小值是$(\frac{|-1|}{\sqrt{5}})^{2}=\frac{1}{5}$.
故選:B.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=ax3+bx(x∈R)
(1)若函數(shù)f(x)的圖象在x=3處的切線與直線24x-y+1=0平行,函數(shù)f(x)在x=1處取得極值,求f(x)的解析式和單調(diào)區(qū)間;
(2)若a=1,且函數(shù)f(x)在區(qū)間[-1,1]上是減函數(shù),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.對(duì)于R上可導(dǎo)函數(shù)f(x),若滿足(x-2)f′(x)>0,則必有(  )
A.f(1)+f(3)<2f(2)B.f(1)+f(3)>2f(2)C.f(1)+f(3)>f(0)+f(4)D.f(1)+f(0)<f(3)+f(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知雙曲線$\frac{x^2}{4}-\frac{y^2}{9}$=1,A,B是其兩個(gè)焦點(diǎn),點(diǎn)M在雙曲線上,∠AMB=120°,則三角形AMB的面積為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知x,y都是實(shí)數(shù),命題p:|x|<3;命題q:x2-2x-3<0,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知?jiǎng)狱c(diǎn)M到橢圓$\frac{x^2}{5}+{y^2}$=1左焦點(diǎn)的距離比到其右焦點(diǎn)的距離大2,則動(dòng)點(diǎn)M的軌跡方程是(  )
A.$\frac{x^2}{3}-{y^2}=1(x≥\sqrt{3})$B.$\frac{x^2}{3}-{y^2}=1(x≤-\sqrt{3})$C.${x^2}-\frac{y^2}{3}=1(x≥1)$D.${x^2}-\frac{y^2}{3}=1(x≤-1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,曲線Γ由曲線C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0,y≤0)和曲線C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0,y>0)組成,其中點(diǎn)F1
F2為曲線C1所在圓錐曲線的焦點(diǎn),點(diǎn)F3,F(xiàn)4為曲線C2所在圓錐曲線的焦點(diǎn),
(Ⅰ)若F2(2,0),F(xiàn)3(-6,0),求曲線Γ的方程;
(Ⅱ)如圖,作直線l平行于曲線C2的漸近線,交曲線C1于點(diǎn)A、B,求證:弦AB的中點(diǎn)M必在曲線C2的另一條漸近線上;
(Ⅲ)對(duì)于(Ⅰ)中的曲線Γ,若直線l1過(guò)點(diǎn)F4交曲線C1于點(diǎn)C、D,求△CDF1面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若$α∈(0,π),β∈(0,π),\frac{sin2α}{1+cos2α}=\frac{4}{3},cos(α+β)=\frac{5}{13}$,則sinβ=$\frac{16}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.定義在R上的偶函數(shù)f(x)滿足f(x)+f(x-1)=0,且在[-5,-4]上是增函數(shù),A,B是銳角三角形的兩個(gè)內(nèi)角,則(  )
A.f(sinA)>f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(sinB)D.f(cosA)>f(cosB)

查看答案和解析>>

同步練習(xí)冊(cè)答案