14.將函數(shù)y=sin2x的圖象向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=f(x)的圖象,則f(x)=( 。
A.$cos(2x-\frac{π}{6})$B.$sin(2x-\frac{π}{6})$C.$cos(2x-\frac{π}{3})$D.$sin(2x-\frac{π}{3})$

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:將函數(shù)y=sin2x的圖象向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=f(x)=sin2(x-$\frac{π}{6}$)=sin(2x-$\frac{π}{3}$)的圖象,
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.某棱柱的三視圖如圖示,則該棱柱的體積為(  )
A.3B.4C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某特色餐館開(kāi)通了美團(tuán)外賣(mài)服務(wù),在一周內(nèi)的某特色外賣(mài)份數(shù)x(份)與收入y(元)之間有如下的對(duì)應(yīng)數(shù)據(jù):
外賣(mài)份數(shù)x(份)24568
收入y(元)3040605070
(1)畫(huà)出散點(diǎn)圖;
(2)求回歸直線方程;
(3)據(jù)此估計(jì)外賣(mài)份數(shù)為12份時(shí),收入為多少元.
注:參考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y-\widehatb\overline x$;
參考數(shù)據(jù):$\sum_{i=1}^5{x_1^2}=145,\sum_{i=1}^5{y_1^2}=13500,\sum_{i=1}^5{{x_i}{y_i}}=1380$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)$f(x)=Asin({ωx+φ})({x∈R,A>0,ω>0,|φ|<\frac{π}{2}})$的部分圖象如圖所示,如果${x_1},{x_2}∈({-\frac{π}{6},\frac{π}{3}})$,且f(x1)=f(x2),則f(x1+x2)=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知數(shù)列{an}中,a1=0,a2=p(p是不等于0的常數(shù)),Sn為數(shù)列{an}的前n項(xiàng)和,若對(duì)任意的正整數(shù)n都有Sn=$\frac{n{a}_{n}}{2}$,則數(shù)列{an}通項(xiàng)為an=p(n-1)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在空間直角坐標(biāo)系O-xyz中,點(diǎn)(1,2,-2)關(guān)于點(diǎn)(-1,0,1)的對(duì)稱(chēng)點(diǎn)是(  )
A.(-3,-2,4)B.(3,-2,-4)C.(-3,2,-4)D.(-3,2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知圓C的方程為x2+y2-2x+4y-3=0,直線l:x-y+t=0.
(1)若直線l與圓C相切,求實(shí)數(shù)t的值;
(2)若直線l與圓C相交于M,N兩點(diǎn),且|MN|=4,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=ax3-x+1的圖象在點(diǎn)(1,f(1))處的切線過(guò)點(diǎn)(2,3).
(1)求a的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若函數(shù)f(x)=e-x+ax,x∈R有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.1<a<eB.a>eC.-e<a<-1D.a<-e

查看答案和解析>>

同步練習(xí)冊(cè)答案