分析 由條件得Sn+1=$\frac{n+1}{2}{a}_{n+1}$,與條件式相減得出遞推式,從而得出{$\frac{{a}_{n+1}}{n}$}是常數(shù)列,得出通項(xiàng),再驗(yàn)證n=1的情況即可.
解答 解:∵Sn=$\frac{n{a}_{n}}{2}$,∴Sn+1=$\frac{n+1}{2}{a}_{n+1}$,
兩式相減得:an+1=$\frac{n+1}{2}$an+1-$\frac{n}{2}{a}_{n}$,
∴$\frac{n-1}{2}$an+1=$\frac{n}{2}{a}_{n}$,
∴當(dāng)n≥2時(shí),$\frac{{a}_{n+1}}{n}$=$\frac{{a}_{n}}{n-1}$=…=$\frac{{a}_{2}}{1}$=p,
∴an=p(n-1).
顯然n=1時(shí),上式也成立.
∴對一切n∈N+,an=p(n-1).
故答案為:an=p(n-1).
點(diǎn)評 本題考查了數(shù)列通項(xiàng)公式的求法,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{7}{4}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $cos(2x-\frac{π}{6})$ | B. | $sin(2x-\frac{π}{6})$ | C. | $cos(2x-\frac{π}{3})$ | D. | $sin(2x-\frac{π}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{12}$個(gè)單位 | B. | 向左平移$\frac{π}{4}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{12}$個(gè)單位 | D. | 向右平移$\frac{π}{4}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | ||
C. | 既是奇函數(shù)又是偶函數(shù) | D. | 既不是奇函數(shù)又不是偶函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com