19.函數(shù)$f(x)={cos^2}(x-\frac{π}{12})+{sin^2}(x+\frac{π}{12})-1$是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)

分析 利用三角恒等變換化簡f(x),再根據(jù)函數(shù)奇偶性的定義判斷.

解答 解:f(x)=$\frac{1}{2}$[1+cos(2x-$\frac{π}{6}$)]+$\frac{1}{2}$[1-cos(2x+$\frac{π}{6}$)]-1
=$\frac{1}{2}$[cos(2x-$\frac{π}{6}$)-cos(2x+$\frac{π}{6}$)]
=$\frac{1}{2}$(2sin2xsin$\frac{π}{6}$)]=$\frac{1}{2}$sin2x,
∴f(-x)=$\frac{1}{2}$sin(-2x)=-$\frac{1}{2}$sin(2x)=-f(x),
∴f(x)是奇函數(shù).
故選A.

點(diǎn)評(píng) 本題考查了三角恒等變換,函數(shù)奇偶性的判斷,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}中,a1=0,a2=p(p是不等于0的常數(shù)),Sn為數(shù)列{an}的前n項(xiàng)和,若對(duì)任意的正整數(shù)n都有Sn=$\frac{n{a}_{n}}{2}$,則數(shù)列{an}通項(xiàng)為an=p(n-1)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足$\root{3}{a_n}≤{a_{n+1}}≤a_n^3,n∈{N_+}$,${a_1}=\frac{3}{2}$.
(Ⅰ)若a2=2,a3=x,a4=27,求實(shí)數(shù)x的取值范圍;
(Ⅱ)設(shè)數(shù)列{an}滿足:${a_{n+1}}=a_n^p$,n∈N+.設(shè)Tn=a1•a2•…•an,若$\root{3}{T_n}≤{T_{n+1}}≤T_n^3$,n∈N+,求p的取值范圍;
(Ⅲ)若a1,a2,…,ak成公比q的等比數(shù)列,且${a_1}•{a_2}•…•{a_k}={(\frac{3}{2})^{1000}}$,求正整數(shù)k的最大值,以及k取最大值時(shí)相應(yīng)數(shù)列a1,a2,…,ak的公比q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)m,n∈R,給出下列結(jié)論:
①m<n<0則m2<n2;
②ma2<na2則m<n;
③$\frac{m}{n}$<a則m<na;
④m<n<0則$\frac{n}{m}$<1.
其中正確的結(jié)論有(  )
A.②④B.①④C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知直線l過點(diǎn)P(1,2),且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),則當(dāng)△AOB的面積取得最小值時(shí),直線l的方程為( 。
A.2x+y-4=0B.x-2y+3=0C.x+y-3=0D.x-y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)=e-x+ax,x∈R有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為(  )
A.1<a<eB.a>eC.-e<a<-1D.a<-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知相關(guān)變量x和$\stackrel{∧}{y}$滿足關(guān)系$\stackrel{∧}{y}$=-x+1相關(guān)變量y與$\stackrel{∧}{z}$滿足$\stackrel{∧}{z}$=3y+4,下列結(jié)論中正確的(  )
A.x和$\stackrel{∧}{y}$負(fù)相關(guān),y與$\stackrel{∧}{z}$負(fù)相關(guān)B.x和$\stackrel{∧}{y}$正相關(guān),y與$\stackrel{∧}{z}$正相關(guān)
C.x和$\stackrel{∧}{y}$正相關(guān),y與$\stackrel{∧}{z}$負(fù)相關(guān)D.x和$\stackrel{∧}{y}$負(fù)相關(guān),y與$\stackrel{∧}{z}$正相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某廠家為了解銷售轎車臺(tái)數(shù)與廣告宣傳費(fèi)之間的關(guān)系,得到如表統(tǒng)計(jì)數(shù)據(jù)表:根據(jù)數(shù)據(jù)表可得回歸直線方程$\widehaty=\widehatbx+\widehata$,其中$\widehatb=2.4$,$\widehata=\overline y-\widehatb\overline x$,據(jù)此模型預(yù)測廣告費(fèi)用為9萬元時(shí),銷售轎車臺(tái)數(shù)為( 。
廣告費(fèi)用x(萬元)23456
銷售轎車y(臺(tái)數(shù))3461012
A.17B.18C.19D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lg(x2+ax+b)的定義域?yàn)锳,$g(x)=\sqrt{k{x^2}+4x+k+3}$的定義域?yàn)锽.
(1)若B=R,求k的取值范圍;
(2)若(∁RA)∩B=B,(∁RA)∪B={x|-2≤x≤3},求實(shí)數(shù)a,b的值及實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案