11.已知相關變量x和$\stackrel{∧}{y}$滿足關系$\stackrel{∧}{y}$=-x+1相關變量y與$\stackrel{∧}{z}$滿足$\stackrel{∧}{z}$=3y+4,下列結論中正確的( 。
A.x和$\stackrel{∧}{y}$負相關,y與$\stackrel{∧}{z}$負相關B.x和$\stackrel{∧}{y}$正相關,y與$\stackrel{∧}{z}$正相關
C.x和$\stackrel{∧}{y}$正相關,y與$\stackrel{∧}{z}$負相關D.x和$\stackrel{∧}{y}$負相關,y與$\stackrel{∧}{z}$正相關

分析 根據(jù)回歸方程,分析當變量增大時,兩個變量之間的變化情況即可.

解答 解:相關變量x和$\stackrel{∧}{y}$滿足關系$\stackrel{∧}{y}$=-x+1,
∴y隨x的增大而減小,x和$\stackrel{∧}{y}$負相關;
相關變量y與$\stackrel{∧}{z}$滿足$\stackrel{∧}{z}$=3y+4,
∴z隨y的增大而增大,y和$\stackrel{∧}{z}$正相關.
故選:D.

點評 本題考查了變量間的相關關系應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.要得到函數(shù)y=sin2x的圖象,只需將函數(shù)y=cos(2x-$\frac{π}{3}$)的圖象( 。
A.向右平移$\frac{π}{12}$個單位B.向左平移$\frac{π}{4}$個單位
C.向左平移$\frac{π}{12}$個單位D.向右平移$\frac{π}{4}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.方程$\frac{x^2}{m+2}+\frac{y^2}{m-2}=1$表示雙曲線,則m的取值范圍是(-2,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)$f(x)={cos^2}(x-\frac{π}{12})+{sin^2}(x+\frac{π}{12})-1$是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,四棱錐S-ABCD的底面是正方形,邊長為$\sqrt{2}$,每條側棱的長都是底面邊長的$\sqrt{2}$倍,P為側棱SD上的點.
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求CP與平面SBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知a,b,c>0,求證$\frac{{{a^2}{b^2}+{b^2}{c^2}+{a^2}{c^2}}}{a+b+c}≥abc$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.給出下列結論:
①扇形的圓心角為120°,半徑為2,則扇形的弧長是$\frac{4π}{3}$;
②某小禮堂有25排座位,每排20個,一次心理學講座,禮堂中坐滿了學生,會后為了了解有關情況,留下座位號是15的所有25名學生進行測試,這里運用的是系統(tǒng)抽樣方法;
③一個人打靶時連續(xù)射擊兩次,則事件“至少有一次中靶”與事件“兩次都不中靶”互為對立事件;
④若0<x<$\frac{π}{2}$,則tanx>x>sinx;
⑤若數(shù)據(jù)x1,x2,…,xn的方差為8,數(shù)據(jù)2x1+1,2x2+1,…,2xn+1的方差為16.
其中正確結論的序號為①②③④.  (把你認為正確結論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=2cosxsin(x+$\frac{π}{6}$)+1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調遞增區(qū)間;
(Ⅱ)將f(x)的圖象向右平移$\frac{π}{3}$個單位得到函數(shù)g(x)的圖象,若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.將除顏色外完全相同的一個白球、一個黃球、兩個紅球分給三個小朋友,且每個小朋友至少分得一個球的分法有21(種).

查看答案和解析>>

同步練習冊答案