18.已知平面向量$\overrightarrow{a}$=(-2,5),$\overrightarrow$=(-$\frac{1}{2}$,-1),則2$\overrightarrow{a}$+4$\overrightarrow$與$\frac{1}{3}$$\overrightarrow{a}$-$\frac{4}{3}$$\overrightarrow$的夾角等于$\frac{π}{4}$.

分析 利用向量坐標(biāo)運(yùn)算性質(zhì)、向量夾角公式即可得出.

解答 解:令$\overrightarrow{u}$=2$\overrightarrow{a}$+4$\overrightarrow$=(-6,6),
$\overrightarrow{v}$=$\frac{1}{3}$$\overrightarrow{a}$-$\frac{4}{3}$$\overrightarrow$=(0,3),
∴$\overrightarrow{u}•\overrightarrow{v}$=18,$|\overrightarrow{u}|$=6$\sqrt{2}$,$|\overrightarrow{v}|$=3.
∴2$\overrightarrow{a}$+4$\overrightarrow$與$\frac{1}{3}$$\overrightarrow{a}$-$\frac{4}{3}$$\overrightarrow$的夾角θ滿足:cosθ=$\frac{\overrightarrow{u}•\overrightarrow{v}}{|\overrightarrow{u}||\overrightarrow{v}|}$=$\frac{18}{6\sqrt{2}×3}$=$\frac{\sqrt{2}}{2}$.
∴$θ=\frac{π}{4}$.
故答案為:$\frac{π}{4}$.

點(diǎn)評(píng) 本題考查了向量坐標(biāo)運(yùn)算性質(zhì)、向量夾角公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知3cos2θ=tanθ+3,且θ≠kπ(k∈Z),則sin[2(π-θ)]等于( 。
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題中,真命題的個(gè)數(shù)為①對(duì)任意的a,b∈R,a>b是a|a|>b|b|的充要條件;②在△ABC中,若A>B,則sinA>sinB;③非零向量$\overrightarrow a,\overrightarrow b$,若$\overrightarrow a•\overrightarrow b>0$,則向量$\overrightarrow a$與向量$\overrightarrow b$的夾角為銳角;④$\frac{ln3}{3}>\frac{ln2}{2}>\frac{ln5}{5}$.(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,并且b=2
(1)若角A,B,C成等差數(shù)列,求△ABC外接圓的半徑;
(2)若三邊a,b,c成等差數(shù)列,求△ABC內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.有下列命題:
①在函數(shù)$y=cos({x-\frac{π}{4}})cos({x+\frac{π}{4}})$的圖象中,相鄰兩個(gè)對(duì)稱中心的距離為π;
②函數(shù)y=$\frac{x+3}{x-1}$的圖象關(guān)于點(diǎn)(-1,1)對(duì)稱;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分條件;
④已知命題p:對(duì)任意的x∈R,都有sinx≤1,則¬p是:存在x∈R,使得sinx>1;
⑤在△ABC中,若3sinA+4cosB=6,4sinB+3cosA=1,則角C等于30°或150°.
其中所有真命題的個(gè)數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}|{2^x}-1|,x≤1\\|{log_{2017}}(x-1)|,x>1\end{array}$,若方程f(x)=t有四個(gè)不同的實(shí)數(shù)根a,b,c,d,且a<b<c<d,則a+b+$\frac{1}{c}+\frac{1}vedzsdn$的取值范圍為( 。
A.(-∞,1]B.[1,2017)C.(-∞,1)D.(1,2017)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的焦點(diǎn)重合,離心率互為倒數(shù),設(shè)F1,F(xiàn)2為雙曲線C的左、右焦點(diǎn),P為右支上任意一點(diǎn),則$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值為(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓F1:(x+1)2+y2=16,定點(diǎn)F2(1,0),A是圓F1上的一動(dòng)點(diǎn),線段F2A的垂直平分線交半徑F1A于P點(diǎn).
(Ⅰ)求P點(diǎn)的軌跡C的方程;
(Ⅱ)四邊形EFGH的四個(gè)頂點(diǎn)都在曲線C上,且對(duì)角線EG,F(xiàn)H過原點(diǎn)O,若kEG•kFH=-$\frac{3}{4}$,求證:四邊形EFGH的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某人5次上班途中所花的時(shí)間(單位:分鐘)分別為12,8,10,11,9,則這組數(shù)據(jù)的標(biāo)準(zhǔn)差為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案