19.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中將底面為直角三角形,且側(cè)棱與底面垂直的棱柱稱為塹堵,將底面為矩形的棱臺(tái)稱為芻童.在如圖所示的塹堵ABM-DCP與芻童的組合體中AB=AD,A1B1=A1D1.棱臺(tái)體積公式:V=$\frac{1}{3}$(S′+$\sqrt{S′S}$+S)h,其中S′,S分別為棱臺(tái)上、下底面面積,h為棱臺(tái)高.
(Ⅰ)證明:直線BD⊥平面MAC;
(Ⅱ)若AB=1,A1D1=2,MA=$\sqrt{3}$,三棱錐A-A1B1D1的體積V=$\frac{2\sqrt{3}}{3}$,求該組合體的體積.

分析 (Ⅰ)證明AD⊥MA,推出MA⊥平面ABCD,得到MA⊥BD.結(jié)合BD⊥AC,證明BD⊥平面MAC.
(Ⅱ)設(shè)芻童ABCD-A1B1C1D1的高為h,利用幾何體的體積公式,轉(zhuǎn)化求解即可.

解答 解:(Ⅰ)證明:由題可知ABM-DCP是底面為直角三角形的直棱柱,
∴AD⊥平面MAB,
又MA?平面MAB,∴AD⊥MA,
又MA⊥AB,AD∩AB=A,AD,AB?平面ABCD,
∴MA⊥平面ABCD,
又BD?平面ABCD,
∴MA⊥BD.
又AB=AD,∴四邊形ABCD為正方形,
∴BD⊥AC,
又MA∩AC=A,MA,AC?平面MAC,
∴BD⊥平面MAC.…(6分)
(Ⅱ)設(shè)芻童ABCD-A1B1C1D1的高為h,
則三棱錐A-A1B1D1體積V=$\frac{1}{3}×\frac{1}{2}×2×2×h$=$\frac{2\sqrt{3}}{3}$,
∴h=$\sqrt{3}$,
故該組合體的體積為V=$\frac{1}{2}×1×\sqrt{3}×1+\frac{1}{3}({1}^{2}+{2}^{2}+\sqrt{{1}^{2}+{2}^{2}})×\sqrt{3}$=$\frac{17\sqrt{3}}{6}$.

點(diǎn)評(píng) 本題考查直線與平面垂直的判定定理的應(yīng)用,組合體的體積的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.將命題“菱形的對(duì)角線互相垂直”改為“若p,則q”的形式,再寫出它的逆命題、否命題、逆否命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.用反證法證明命題“a,b∈N,如果ab為偶數(shù),那么a,b中至少有一個(gè)為偶數(shù)”,則正確的假設(shè)內(nèi)容是( 。
A.a,b都為偶數(shù)B.a,b不為偶數(shù)
C.a,b都不為偶數(shù)D.a,b中有一個(gè)不為偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知{an}是等差數(shù)列,滿足a2=6,a5=15,數(shù)列{bn}滿足b2=8,b5=31,且{bn-an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知{an}為等差數(shù)列,a1+a3+a5=9,a2+a4+a6=15,則a3+a4=( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.(文科)設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}x,x<1\\{x^3}-\frac{1}{x}+1,x≥1\end{array}\right.$,則$f(\frac{1}{f(2)})$=$\frac{2}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}滿足a1=1,an=a1+$\frac{1}{2}{a_2}+\frac{1}{3}{a_3}+…+\frac{1}{n-1}{a_{n-1}}$(n≥2,n∈N*),若ak=2017,則k=2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知θ∈[0,2π),當(dāng)θ取遍全體實(shí)數(shù)時(shí),直線xcosθ+ysinθ=4+$\sqrt{2}$sin(θ+$\frac{π}{4}$)所圍成的圖形的面積是(  )
A.πB.C.D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{2π}{3}$$\frac{8π}{3}$
Asin(ωx+φ)030-30
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)f(x)的解析式;
(2)令g(x)=f (x+$\frac{π}{3}$)-$\frac{1}{2}$,當(dāng)x∈[-π,π]時(shí),恒有不等式g(x)-a-3<0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案