考點(diǎn):數(shù)列的極限,等比關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)a
1=2,對(duì)一切n∈N
*都有S
n+1=3S
n+n
2+2成立,令n=1,求得a
2 的值.
(2)由S
n+1=3S
n+n
2+2,可得S
n=3S
n-1+(n-1)
2+2,兩式相見可得a
n+1+(n+1)=3(a
n+n) ①.結(jié)合條件可得b
n+1=3b
n,從而證得數(shù)列{b
n}是公比為3的等比數(shù)列.
(3)求出{b
n }的通項(xiàng)公式,再利用等比數(shù)列的前n項(xiàng)和公式求得
+
+…+
的值,從而求得所求式子的值.
解答:
解:(1)∵a
1=2,對(duì)一切n∈N
*都有S
n+1=3S
n+n
2+2成立,
令n=1,可得 2+a
2=3×2+1+2,求得a
2=7.
(2)證明:∵S
n+1=3S
n+n
2+2,∴S
n=3S
n-1+(n-1)
2+2,
∴兩式相見可得a
n+1=3a
n+2n-1,即a
n+1+(n+1)=3a
n+2n-1+(n+1)=3(a
n+n) ①.
又b
n=a
n+n,∴由①可得 b
n+1=3(a
n+1+n)=3b
n,∴數(shù)列{b
n}是公比為3的等比數(shù)列.
(3)由于b
1=a
1+1=3,故b
n=3×3
n-1=3
n,
∴
+
+…+
=
+
+
+…+
=
=
-
×
()n,
∴
(
+
+…+
)=
(
-
×
()n )=
.
點(diǎn)評(píng):本題主要考查等比關(guān)系的確定,等比數(shù)列的前n項(xiàng)和公式的應(yīng)用,求數(shù)列的極限,屬于中檔題.