【題目】(題文)如圖所示的某種容器的體積為,它是由圓錐和圓柱兩部分連接而成,圓柱與圓錐的底面半徑都為.圓錐的高為,母線與底面所成的角為;圓柱的高為,已知圓柱底面的造價(jià)為,圓柱側(cè)面造價(jià)為,圓錐側(cè)面造價(jià)為

(1)將圓柱的高表示為底面半徑的函數(shù),并求出定義域;

(2)當(dāng)容器造價(jià)最低時(shí),圓柱的底面半徑為多少?

【答案】(1)(2).

【解析】

(1)由題意,根據(jù)圓錐的體積公式和圓柱的體積公式,即可得到關(guān)于的函數(shù)關(guān)系式;

(2)根據(jù)圓錐與圓柱的側(cè)面積公式得到容器總造價(jià)為,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性,即可得到函數(shù)最小值,得到解答.

(1)解:因?yàn)閳A錐的母線與底面所成的角為,所以,

圓錐的體積為,圓柱的體積為

因?yàn)?/span>,所以,

所以

因?yàn)?/span>,所以.因此

所以,定義域?yàn)?/span>

(2)圓錐的側(cè)面積

圓柱的側(cè)面積,底面積

容器總造價(jià)為

,則.令,得

當(dāng)時(shí),,上為單調(diào)減函數(shù);

當(dāng)時(shí),,上為單調(diào)增函數(shù).

因此,當(dāng)且僅當(dāng)時(shí),有最小值,y有最小值90元.

所以,總造價(jià)最低時(shí),圓柱底面的半徑為3cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別為AB、BC的中點(diǎn),現(xiàn)在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三點(diǎn)重合,重合后的點(diǎn)記為P.

問:(1)這個(gè)幾何體是什么?

(2)這個(gè)幾何體由幾個(gè)面構(gòu)成?每個(gè)面的三角形是什么三角形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B點(diǎn)在AM上,D點(diǎn)在AN上,且對(duì)角線MN過點(diǎn)C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面積大于9平方米,則DN的長應(yīng)在什么范圍內(nèi)?

(2)當(dāng)DN的長度為多少時(shí),矩形花壇AMPN的面積最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示為一正方體的平面展開圖,在這個(gè)正方體中,有下列四個(gè)命題:

AFGC;

BDGC成異面直線且夾角為60

BDMN;

BG與平面ABCD所成的角為45.

其中正確的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體ABCDA1B1C1D1中,MN分別是A1B1、B1C1的中點(diǎn),問:

(1)AMCN是否是異面直線?說明理由;

(2)D1BCC1是否是異面直線?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車“定速巡航”技術(shù)是用于控制汽車的定速行駛,當(dāng)汽車被設(shè)定為定速巡航狀態(tài)時(shí),電腦根據(jù)道路狀況和汽車的行駛阻力自動(dòng)控制供油量,使汽車始終保持在所設(shè)定的車速行駛,而無需司機(jī)操縱油門,從而減輕疲勞,促進(jìn)安全,節(jié)省燃料.某汽車公司為測量某型號(hào)汽車定速巡航狀態(tài)下的油耗情況,選擇一段長度為240km的平坦高速路段進(jìn)行測試.經(jīng)多次測試得到一輛汽車每小時(shí)耗油量F(單位:L)與速度v(單位:km/h)()的下列數(shù)據(jù):

v

0

40

60

80

120

F

0

10

20

為了描述汽車每小時(shí)耗油量與速度的關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:

,.

1)請(qǐng)選出你認(rèn)為最符合實(shí)際的函數(shù)模型,并求出相應(yīng)的函數(shù)解析式.

2)這輛車在該測試路段上以什么速度行駛才能使總耗油量最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間,佳怡準(zhǔn)備去探望奶奶,她到商店買了一盒點(diǎn)心.為了美觀起見,售貨員對(duì)點(diǎn)心盒做了一個(gè)捆扎(如圖(1)所示),并在角上配了一個(gè)花結(jié).售貨員說,這樣的捆扎不僅漂亮,而且比一般的十字捆扎(如圖(2)所示)包裝更節(jié)省彩繩.你同意這種說法嗎?請(qǐng)給出你的理由.(注;長方體點(diǎn)心盒的高小于長、寬.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

)當(dāng)時(shí),證明:為偶函數(shù);

)若上單調(diào)遞增,求實(shí)數(shù)的取值范圍

)若,求實(shí)數(shù)的取值范圍,使上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某森林出現(xiàn)火災(zāi),火勢正以每分鐘的速度順風(fēng)蔓延,消防站接到警報(bào)立即派消防隊(duì)員前去,在火災(zāi)發(fā)生后分鐘到達(dá)救火現(xiàn)場,已知消防隊(duì)員在現(xiàn)場平均每人每分鐘滅火,所消耗的滅火材料、勞務(wù)津貼等費(fèi)用為每人每分鐘125元,另附加每次救火所損耗的車輛、器械和裝備等費(fèi)用平均每人100元,而燒毀一平方米森林損失費(fèi)為60元.

(1)設(shè)派名消防隊(duì)員前去救火,用分鐘將火撲滅,試建立的函數(shù)關(guān)系式;

(2)問應(yīng)該派多少名消防隊(duì)員前去救火,才能使總損失最少?

(總損失=滅火材料、勞務(wù)津貼等費(fèi)用+車輛、器械和裝備費(fèi)用+森林損失費(fèi))

查看答案和解析>>

同步練習(xí)冊(cè)答案