分析 配方得到函數(shù)y=-a(x-$\frac{1}{2a}$)2+$\frac{1}{4a}$,當(dāng)x=$\frac{1}{2a}$時,函數(shù)有最大值,即可得到$\frac{1}{12}$=$\frac{1}{4a}$,解得即可.
解答 解:函數(shù)y=x(1-ax)=-ax2+x=-a(x-$\frac{1}{2a}$)2+$\frac{1}{4a}$,
∵0<x<$\frac{1}{a}$,
∴$\frac{1}{2a}$∈(0,$\frac{1}{a}$),
∴當(dāng)x=$\frac{1}{2a}$時,函數(shù)有最大值,
∵函數(shù)y=x(1-ax)的最大值為$\frac{1}{12}$,
∴$\frac{1}{12}$=$\frac{1}{4a}$,
∴a=3,
故答案為:3.
點評 本題考查了二次函數(shù)的性質(zhì)以及二次函數(shù)的最值問題,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$$\overrightarrow a$+$\frac{1}{3}$$\overrightarrow b$ | B. | $\frac{1}{3}$$\overrightarrow a$+$\frac{2}{3}$$\overrightarrow b$ | C. | $\frac{3}{5}$$\overrightarrow a$+$\frac{4}{5}$$\overrightarrow b$ | D. | $\frac{4}{5}$$\overrightarrow a$+$\frac{3}{5}$$\overrightarrow b$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com