14.已知集合A={x||x|>2},B={x|x2-3x<0},則A∪B=( 。
A.(-∞,-2)∪(0,+∞)B.(-∞,0)∪(2,+∞)C.(2,3)D.(-2,3)

分析 先分別求出集合A和B,由此能求出A∪B.

解答 解:∵集合A={x||x|>2}={x|x>2或x<-2},
B={x|x2-3x<0}={x|0<x<3},
∴A∪B={x|x<-2或x>0}=(-∞,-2)∪(0,+∞).
故選:A.

點(diǎn)評(píng) 本題考查并集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意并集性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若不等式$a<x+\frac{4}{x}$對(duì)?x∈(0,+∞)恒成立,則實(shí)數(shù)a的取值范圍是(-∞,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若等比數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=a-($\frac{1}{2}$)n-1,則直線(a-1)x-y+3=0與圓(x-a)2+y2=12的位置關(guān)系為( 。
A.相離B.相切C.相交D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)在定義域(0,+∞)內(nèi)恒滿足:①f(x)>0;②2f(x)<xf′(x)<3f(x),其中f′(x)為f(x)的導(dǎo)函數(shù),則( 。
A.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$B.$\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$C.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$D.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知三棱錐S-ABC,其三視圖中的正(主)視圖和側(cè)(左)視圖如圖所示,則該三棱錐的體積為( 。
A.$\frac{{8\sqrt{3}}}{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$\frac{{32\sqrt{3}}}{3}$D.$16\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$e=\frac{{\sqrt{3}}}{2}$,P為橢圓E上的動(dòng)點(diǎn),P到點(diǎn)M(0,2)的距離的最大值為$\frac{2}{3}\sqrt{21}$,直線l交橢圓于A(x1,y1)、B(x2,y2)兩點(diǎn).
(1)求橢圓E的方程;
(2)若以P為圓心的圓的半徑為$\frac{2}{5}\sqrt{5}$,且圓P與OA、OB相切.
(i)是否存在常數(shù)λ,使x1x2+λy1y2=0恒成立?若存在,求出常數(shù)λ;若不存在,說明理由;
(ii)求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{1}{2}$,它的一個(gè)焦點(diǎn)到短軸頂點(diǎn)的距離為2,動(dòng)直線l:y=kx+m交橢圓E于A、B兩點(diǎn),設(shè)直線OA、OB的斜率都存在,且${k_{OA}}•{k_{OB}}=-\frac{3}{4}$.
(1)求橢圓E的方程;
(2)求證:2m2=4k2+3;
(3)求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|log2(x+1)>0},B={x|0<x<1},則∁AB=( 。
A.(0,1)B.(0,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.?dāng)?shù)列-1,3,-5,7,-9,…的一個(gè)通項(xiàng)公式為( 。
A.an=2n-1B.an=(-1)n(1-2n)C.an=(-1)n(2n-1)D.an(-1)n+1(2n-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案