【題目】已知函數.
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)求的單調區(qū)間;
(Ⅲ)若在區(qū)間上恒成立,求實數的取值范圍.
【答案】(Ⅰ)切線方程為.
(Ⅱ)當時, 的單調增區(qū)間是和,單調減區(qū)間是;
當時, 的單調增區(qū)間是;
當時,的單調增區(qū)間是和,單調減區(qū)間是.
(Ⅲ).
【解析】
試題分析:(Ⅰ)切線的斜率,等于在切點的導函數值.
(Ⅱ)通過“求導數,求駐點,討論各區(qū)間導數值的正負”,確定函數的單調區(qū)間。本題應特別注意討論,,時的不同情況.
(Ⅲ)在區(qū)間上恒成立,只需在區(qū)間的最小值不大于0.
試題解析:(Ⅰ)因為,,
所以, 1分
,, 3分
所以切線方程為. 4分
(Ⅱ), 5分
由得, 6分
當時,在或時,在時,
所以的單調增區(qū)間是和,單調減區(qū)間是; 7分
當時,在時,所以的單調增區(qū)間是; 8分
當時,在或時,在時.
所以的單調增區(qū)間是和,單調減區(qū)間是. 10分
(Ⅲ)由(Ⅱ)可知在區(qū)間上只可能有極小值點,
所以在區(qū)間上的最大值在區(qū)間的端點處取到, 12分
即有且,
解得. 14分
科目:高中數學 來源: 題型:
【題目】某種蔬菜從1月1日起開始上市,通過市場調查,得到該蔬菜種植成本(單位:元/)與上市時間(單位:10天)的數據如下表:
時間 | 5 | 11 | 25 |
種植成本 | 15 | 10.8 | 15 |
(1)根據上表數據,從下列函數:,,,中(其中),選取一個合適的函數模型描述該蔬菜種植成本與上市時間的變化關系;
(2)利用你選取的函數模型,求該蔬菜種植成本最低時的上市時間及最低種植成本.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別是△ABC的內角A,B,C的對邊,若△ABC的周長為2(+1),且sin B+sin C=sin A,則a= ( )
A. B. 2 C. 4 D.
【答案】B
【解析】
根據正弦定理把轉化為邊的關系,進而根據△ABC的周長,聯立方程組,可求出a的值.
根據正弦定理,可化為
∵△ABC的周長為,
∴聯立方程組,
解得a=2.
故選:B
【點睛】
(1)在三角形中根據已知條件求未知的邊或角時,要靈活選擇正弦、余弦定理進行邊角之間的轉化,以達到求解的目的.
(2)求角的大小時,在得到角的某一個三角函數值后,還要根據角的范圍才能確定角的大小,這點容易被忽視,解題時要注意.
【題型】單選題
【結束】
7
【題目】已知數列{an}中,an=n2-kn(n∈N*),且{an}單調遞增,則k的取值范圍是( )
A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需再收5元.
該公司對近60天,每天攬件數量統(tǒng)計如下表:
(1)某人打算將三件禮物隨機分成兩個包裹寄出,求該人支付的快遞費不超過30元的概率;
(2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.前臺工作人員每人每天攬件不超過150件,工資100元,目前前臺有工作人員3人,那么,公司將前臺工作人員裁員1人對提高公司利潤是否更有利?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C:的離心率為,右準線方程為.
求橢圓C的標準方程;
已知斜率存在且不為0的直線l與橢圓C交于A,B兩點,且點A在第三象限內為橢圓C的上頂點,記直線MA,MB的斜率分別為,.
若直線l經過原點,且,求點A的坐標;
若直線l過點,試探究是否為定值?若是,請求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著節(jié)能減排意識深入人心以及共享單車在饒城的大范圍推廣,越來越多的市民在出行時喜歡選擇騎行共享單車。為了研究廣大市民在共享單車上的使用情況,某公司在我市隨機抽取了100名用戶進行調查,得到如下數據:
每周使用次數 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果認為每周使用超過3次的用戶為“喜歡騎行共享單車”,請完成列表(見答題卡),并判斷能否在犯錯誤概率不超過0.05的前提下,認為是否“喜歡騎行共享單車”與性別有關?
(2)每周騎行共享單車6次及6次以上的用戶稱為“騎行達人”,視頻率為概率,在我市所有“騎行達人”中,隨機抽取4名用戶.
① 求抽取的4名用戶中,既有男生“騎行達人”又有女“騎行達人”的概率;
②為了鼓勵女性用戶使用共享單車,對抽出的女“騎行達人”每人獎勵500元,記獎勵總金額為,求的分布列及數學期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的頂點在坐標原點,過拋物線的焦點的直線與該拋物線交于兩點, 面積的最小值為2.
(1)求拋物線的標準方程;
(2)試問是否存在定點,過點的直線與拋物線交于兩點,當三點不共線時,使得以為直徑的圓必過點.若存在,求出所有符合條件的點;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C的頂點在坐標原點,焦點F在x軸上,拋物線C上一點到焦點F的距離為.
Ⅰ求拋物線C的標準方程;
Ⅱ設點,過點的直線l與拋物線C相交于A,B兩點,記直線MA與直線MB的斜率分別為,,證明:為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com