分析 (1)由復(fù)數(shù)相等的條件列出方程組,求解即可得答案;
(2)把z和a,b的值代入|z+a+bi|,再結(jié)合復(fù)數(shù)求模以及配方法即可證得結(jié)論.
解答 (1)解:由z1=a-1+(3-a)i,z2=b+(2b-1)i,由z1=z2,
得$\left\{\begin{array}{l}{a-1=b}\\{3-a=2b-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=2}\\{b=1}\end{array}\right.$,
∴a=2,b=1;
(2)證明:∵z=m-2+(1-m)i,m∈R,
∴|z+a+bi|=|m-2+(1-m)i+2+i|=$|m+(2-m)i|=\sqrt{{m}^{2}+(2-m)^{2}}$
=$\sqrt{2{m}^{2}-4m+4}$=$\sqrt{2(m-1)^{2}+2}$$≥\sqrt{2}$.
當(dāng)且僅當(dāng)m=1時(shí)上式取等號(hào),
∴|z+a+bi|≥$\sqrt{2}$.
點(diǎn)評(píng) 本題考查了復(fù)數(shù)相等的條件,考查了復(fù)數(shù)模的求法以及利用配方法求最值,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (cosx)′=sinx | B. | ${(\frac{sinx}{x^2})^'}=\frac{cosx}{2x}$ | ||
C. | (ex)′=xex-1 | D. | ${(lgx)^'}=\frac{1}{xln10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$個(gè)單位得到 | B. | 向右平移$\frac{π}{6}$個(gè)單位得到 | ||
C. | 向左平移$\frac{π}{30}$個(gè)單位得到 | D. | 向右平移$\frac{π}{30}$個(gè)單位得到 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com