已知拋物線(xiàn)的焦點(diǎn)為,點(diǎn)為拋物線(xiàn)上的一點(diǎn),其縱坐標(biāo)為,.
(1)求拋物線(xiàn)的方程;
(2)設(shè)為拋物線(xiàn)上不同于的兩點(diǎn),且,過(guò)兩點(diǎn)分別作拋物線(xiàn)的切線(xiàn),記兩切線(xiàn)的交點(diǎn)為,求的最小值.

(1);(2).

解析試題分析:(1)對(duì)于開(kāi)口向上的拋物線(xiàn)來(lái)說(shuō),,代入坐標(biāo),解出;
(2)設(shè),利用導(dǎo)數(shù)的幾何意義,利用點(diǎn)斜式方程,分別設(shè)出過(guò)兩點(diǎn)的切線(xiàn)方程,然后求出交點(diǎn)的坐標(biāo),結(jié)合,所得到的關(guān)系式,設(shè),以及的坐標(biāo),將點(diǎn)的坐標(biāo)轉(zhuǎn)化為一個(gè)未知量表示的函數(shù),,用未知量表示,轉(zhuǎn)化為函數(shù)的最值問(wèn)題,利用二次函數(shù)求最值的方法求出.中檔偏難題型.
試題解析:(1)由拋物線(xiàn)定義得:   2分
拋物線(xiàn)方程為   4分
(2)設(shè)
   6分
處的切線(xiàn)的斜率為
處的切線(xiàn)方程為
   8分
設(shè),由
   10分
當(dāng)時(shí),   12分
考點(diǎn):1.拋物線(xiàn)的定義;2.導(dǎo)數(shù)的幾何意義;3.函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的長(zhǎng)軸長(zhǎng)為,離心率為,分別為其左右焦點(diǎn).一動(dòng)圓過(guò)點(diǎn),且與直線(xiàn)相切.
(1)(ⅰ)求橢圓的方程;(ⅱ)求動(dòng)圓圓心軌跡的方程;
(2)在曲線(xiàn)上有四個(gè)不同的點(diǎn),滿(mǎn)足共線(xiàn),共線(xiàn),且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知平面內(nèi)一動(dòng)點(diǎn)到兩個(gè)定點(diǎn)的距離之和為,線(xiàn)段的長(zhǎng)為.

(1)求動(dòng)點(diǎn)的軌跡;
(2)當(dāng)時(shí),過(guò)點(diǎn)作直線(xiàn)與軌跡交于、兩點(diǎn),且點(diǎn)在線(xiàn)段的上方,線(xiàn)段的垂直平分線(xiàn)為
①求的面積的最大值;
②軌跡上是否存在除外的兩點(diǎn)、關(guān)于直線(xiàn)對(duì)稱(chēng),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線(xiàn),直線(xiàn),是拋物線(xiàn)的焦點(diǎn)。

(1)在拋物線(xiàn)上求一點(diǎn),使點(diǎn)到直線(xiàn)的距離最;
(2)如圖,過(guò)點(diǎn)作直線(xiàn)交拋物線(xiàn)于A、B兩點(diǎn).
①若直線(xiàn)AB的傾斜角為,求弦AB的長(zhǎng)度;
②若直線(xiàn)AO、BO分別交直線(xiàn)兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理)已知點(diǎn)是平面直角坐標(biāo)系上的一個(gè)動(dòng)點(diǎn),點(diǎn)到直線(xiàn)的距離等于點(diǎn)到點(diǎn)的距離的2倍.記動(dòng)點(diǎn)的軌跡為曲線(xiàn).
(1)求曲線(xiàn)的方程;
(2)斜率為的直線(xiàn)與曲線(xiàn)交于兩個(gè)不同點(diǎn),若直線(xiàn)不過(guò)點(diǎn),設(shè)直線(xiàn)的斜率分別為,求的數(shù)值;
(3)試問(wèn):是否存在一個(gè)定圓,與以動(dòng)點(diǎn)為圓心,以為半徑的圓相內(nèi)切?若存在,求出這個(gè)定圓的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,設(shè)曲線(xiàn)C1所圍成的封閉圖形的面積為,曲線(xiàn)C1上的點(diǎn)到原點(diǎn)O的最短距離為.以曲線(xiàn)C1與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓記為C2
(1)求橢圓C2的標(biāo)準(zhǔn)方程;
(2)設(shè)AB是過(guò)橢圓C2中心O的任意弦,l是線(xiàn)段AB的垂直平分線(xiàn).Ml上的點(diǎn)(與O不重合).
①若MO=2OA,當(dāng)點(diǎn)A在橢圓C2上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡方程;
②若Ml與橢圓C2的交點(diǎn),求△AMB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,

已知橢圓E:的離心率為,過(guò)左焦點(diǎn)且斜率為的直線(xiàn)交
橢圓E于A,B兩點(diǎn),線(xiàn)段AB的中點(diǎn)為M,直線(xiàn)交橢圓E于C,D兩點(diǎn).
(1)求橢圓E的方程;
(2)求證:點(diǎn)M在直線(xiàn)上;
(3)是否存在實(shí)數(shù),使得四邊形AOBC為平行四邊形?若存在求出的值,若不存在說(shuō)明理
由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別、,點(diǎn)是橢圓短軸的一個(gè)端點(diǎn),且焦距為6,的周長(zhǎng)為16.
(I)求橢圓的方程;
(2)求過(guò)點(diǎn)且斜率為的直線(xiàn)被橢圓所截的線(xiàn)段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓的中心在原點(diǎn)O,右焦點(diǎn)F在x軸上,橢圓與y軸交于A、B兩點(diǎn),其右準(zhǔn)線(xiàn)l與x軸交于T點(diǎn),直線(xiàn)BF交橢圓于C點(diǎn),P為橢圓上弧AC上的一點(diǎn).

(1)求證:A、C、T三點(diǎn)共線(xiàn);
(2)如果=3,四邊形APCB的面積最大值為,求此時(shí)橢圓的方程和P點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案