1.已知函數(shù)f(x)=4sinxcos(x-$\frac{π}{6}$)+1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域.

分析 (Ⅰ)利用二倍角和兩角和與差以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,利用三角函數(shù)的周期公式求函數(shù)的最小正周期.
(Ⅱ)利用x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上時(shí),求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的最大值和最小值,即得到f(x)的值域.

解答 解:函數(shù)f(x)=4sinxcos(x-$\frac{π}{6}$)+1.
化簡可得:f(x)=4sinxcosxcos$\frac{π}{6}$+4sin2xsin$\frac{π}{6}$+1
=$\sqrt{3}$sin2x+2sin2x+1=$\sqrt{3}$sin2x-cos2x+2=2sin(2x-$\frac{π}{6}$)+2
(Ⅰ)函數(shù)f(x)的最小正周期T=$\frac{2π}{2}=π$
(Ⅱ)∵x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上時(shí),
∴2x-$\frac{π}{6}$∈[$-\frac{π}{2}$,$\frac{π}{3}$]
當(dāng)2x-$\frac{π}{6}$=$-\frac{π}{2}$時(shí),函數(shù)f(x)取得最小值為2×(-1)+2=0;
當(dāng)2x-$\frac{π}{6}$=$\frac{π}{3}$時(shí),函數(shù)f(x)取得最大值為2×$\frac{\sqrt{3}}{2}$+2=$\sqrt{3}+2$
∴函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域?yàn)閇0,$\sqrt{3}+2$].

點(diǎn)評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線x+ay+2=0與圓x2+y2+2x-2y+1=0有公共點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.a>0B.a≥0C.a≤0D.a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某校為了解高一學(xué)生周末的“閱讀時(shí)間”,從高一年級中隨機(jī)調(diào)查了100名學(xué)生進(jìn)行調(diào)查,獲得了每人的周末“閱讀時(shí)間”(單位:小時(shí)),按圖[0.0.5),[0.5,1),…,[4,4.5]分9組,制成樣本的頻率分布直方圖如圖所示.
(Ⅰ)求圖中a的值;
(Ⅱ)估計(jì)該校高一學(xué)生周末“閱讀時(shí)間”的中位數(shù);
(Ⅲ)用樣本頻率代替概率,現(xiàn)從全校高一年級隨機(jī)抽取20名學(xué)生,其中k名學(xué)生“閱讀時(shí)間”在[1,2.5]小時(shí)內(nèi)的概率為P(X=k),其中k=0,1,2,…20.當(dāng)P(X=k)取最大時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對應(yīng)的點(diǎn)關(guān)于實(shí)軸對稱,若${z_1}=\frac{1+3i}{1-i}$,則z1+z2等于( 。
A.4iB.-4iC.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,其上頂點(diǎn)B與左焦點(diǎn)F所在的直線的傾斜角為$\frac{π}{3}$,O為坐標(biāo)原點(diǎn)OBF,三角形的周長為$3+\sqrt{3}$.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的右頂點(diǎn)為A,不過點(diǎn)A的直線l與橢圓E相交于P、Q兩點(diǎn),若以PQ為直徑的圓經(jīng)過點(diǎn)A,求證:直線l過定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$,其中|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角是$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知全集U=R,A={0,1,2,3},B={y|y=2x,x∈A},則(∁UA)∩B=( 。
A.(-∞,0)∪(3,+∞)B.{x|x>3,x∈N}C.{4,8}D.[4,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,一個(gè)頂點(diǎn)在拋物線x2=4y的準(zhǔn)線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),M,N為橢圓上的兩個(gè)不同的動點(diǎn),直線OM,ON的斜率分別為k1和k2,若k1k2=-$\frac{1}{4}$,求△MON的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線方程為$\frac{{x}^{2}}{{m}^{2}+4}$-$\frac{{y}^{2}}{^{2}}$=1,若其過焦點(diǎn)的最短弦長為2,則該雙曲線的離心率的取值范圍是(1,$\frac{\sqrt{6}}{2}$].

查看答案和解析>>

同步練習(xí)冊答案