分析 (Ⅰ)由橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,一個(gè)頂點(diǎn)在拋物線x2=4y的準(zhǔn)線上,列出方程組求出a=2,b=1,由此能求出橢圓C的方程.
(Ⅱ)設(shè)直線MN的方程為y=kx+m,(m≠0),由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得:(4k2+1)x2+8kmx+4m2-4=0,由此利用韋達(dá)定理、弦長(zhǎng)公式、點(diǎn)到直線距離公式,結(jié)合已知條件能求出△MON的面積.
解答 解:(Ⅰ)∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,一個(gè)頂點(diǎn)在拋物線x2=4y的準(zhǔn)線上,
x2=4y的準(zhǔn)線方程為y=-1,
∴$\left\{\begin{array}{l}{b=1}\\{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=1,
∴橢圓C的方程為$\frac{{x}^{2}}{4}+{y}^{2}$=1.
(Ⅱ)當(dāng)直線MN的斜率存在時(shí),設(shè)其方程為y=kx+m,(m≠0),
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,消去y,得:(4k2+1)x2+8kmx+4m2-4=0,
設(shè)M(x1,y1),N(x2,y2),則${x}_{1}+{x}_{2}=\frac{-8km}{4{k}^{2}+1}$,x1x2=$\frac{4{m}^{2}-4}{4{k}^{2}+1}$,
∴|MN|=$\sqrt{({k}^{2}+1)[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{({k}^{2}+1)[(\frac{-8km}{4{k}^{2}+1})^{2}-4×\frac{4{m}^{2}-4}{4{k}^{2}+1}]}$=$\frac{4\sqrt{({k}^{2}+1)(4{k}^{2}+1-{m}^{2})}}{4{k}^{2}+1}$,
點(diǎn)O到直線y=kx+m的距離d=$\frac{|m|}{\sqrt{{k}^{2}+1}}$,
${S}_{△MON}=\frac{1}{2}|MN|d=\frac{2|m|\sqrt{4{k}^{2}+1-{m}^{2}}}{4{k}^{2}+1}$=2$\sqrt{\frac{{m}^{2}}{4{k}^{2}+1}(1-\frac{{m}^{2}}{4{k}^{2}+1})}$,
∵k1k2=-$\frac{1}{4}$,
∴k1k2=$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=$\frac{(k{x}_{1}+m)(k{x}_{2}+m)}{{x}_{1}{x}_{2}}$=$\frac{{k}^{2}{x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}}{{x}_{1}{x}_{2}}$
=$\frac{{k}^{2}×\frac{4{m}^{2}-4}{4{k}^{2}+1}+km×\frac{-8km}{4{k}^{2}+1}+{m}^{2}}{\frac{4{m}^{2}-4}{4{k}^{2}+1}}$=$\frac{{m}^{2}-4{k}^{2}}{4{m}^{2}-4}$=-$\frac{1}{4}$,
∴4k2=2m2-1,
∴S△MON=2$\sqrt{\frac{{m}^{2}}{4{k}^{2}+1}(1-\frac{{m}^{2}}{4{k}^{2}+1})}$=2$\sqrt{\frac{1}{2}×(1-\frac{1}{2})}$=1.
點(diǎn)評(píng) 本題考查橢圓方程、三角形面積的求法,考查韋達(dá)定理、弦長(zhǎng)公式、點(diǎn)到直線距離公式、直線方程、橢圓性質(zhì)等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、方程與函數(shù)思想、數(shù)形結(jié)合思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4$\sqrt{3}$ | B. | 3$\sqrt{13}$ | C. | $\sqrt{14}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com