【題目】黨的十九大報告指出,建設(shè)教育強(qiáng)國是中華民族偉大復(fù)興的基礎(chǔ)工程,必須把教育事業(yè)放在優(yōu)先位置,深化教育資源的均衡發(fā)展.現(xiàn)有4名男生和2名女生主動申請畢業(yè)后到兩所偏遠(yuǎn)山區(qū)小學(xué)任教.將這6名畢業(yè)生全部進(jìn)行安排,每所學(xué)校至少安排2名畢業(yè)生,則每所學(xué)校男女畢業(yè)生至少安排一名的概率為
A. B. C. D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場在促銷期間規(guī)定:商場內(nèi)所有商品按標(biāo)價的出售,當(dāng)顧客在商場內(nèi)消費一定金額后,按如下方案獲得相應(yīng)金額的獎券:
消費金額(元)的范圍 | … | ||||
獲得獎券的金額(元) | 30 | 60 | 100 | 130 | … |
根據(jù)上述促銷方法,顧客在該商場購物可以獲得雙重優(yōu)惠,例如:購買標(biāo)價為400元的商品,則消費金額為320元,獲得的優(yōu)惠額為:元,設(shè)購買商品得到的優(yōu)惠率=(購買商品獲得的優(yōu)惠額)/(商品標(biāo)價),試問:
(1)若購買一件標(biāo)價為1000元的商品,顧客得到的優(yōu)惠率是多少?
(2)對于標(biāo)價在(元)內(nèi)的商品,顧客購買標(biāo)價為多少元的商品,可得到不小于的優(yōu)惠率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△中,,分別為,的中點,為的中點,,.將△沿折起到△的位置,使得平面平面,如圖2.
(Ⅰ)求證:;
(Ⅱ)求直線和平面所成角的正弦值;
(Ⅲ)線段上是否存在點,使得直線和所成角的余弦值為?若存在,求出的值;若不存在,說明理由.
圖1 圖2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列各題中,判斷p是q的什么條件(請用“充分不必要條件”“必要不充分條件”“充要條件”“既不充分又不必要條件”回答):
(1)p:三角形是等腰三角形,q:三角形是等邊三角形;
(2)在一元二次方程中,有實數(shù)根,;
(3);
(4);
(5).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b,c分別是的三條邊,且.我們知道,如果為直角三角形,那么(勾股定理).反過來,如果,那么為直角三角形(勾股定理的逆定理).由此可知,為直角三角形的充要條件是.請利用邊長a,b,c分別給出為銳角三角形和鈍角三角形的一個充要條件,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中:
①若函數(shù)的定義域為,則一定是偶函數(shù);
②若是定義域上奇函數(shù),,都有,則的圖像關(guān)于直線對稱;
③已知,是函數(shù)的定義域內(nèi)的任意兩個值,且,若,則是定義域減函數(shù);
④已知是定義在上奇函數(shù),且也為奇函數(shù),則是以4為周期的周期函數(shù)。
其中真命題的有_____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,為了保護(hù)環(huán)境,實現(xiàn)城市綠化,某房地產(chǎn)公司要在拆遷地長方形ABCD處規(guī)劃一塊長方形地面HPGC,建造住宅小區(qū)公園,但不能越過文物保護(hù)區(qū)三角形AEF的邊線EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,問如何設(shè)計才能使公園占地面積最大,求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的個數(shù)是( )
①命題已知或,,則是的充分不必要條件;
②“函數(shù)的最小正周期為”是“”的必要不充分條件;
③在上恒成立在上恒成立;
④“平面向量與的夾角是鈍角”的充要條件是“”
⑤命題函數(shù)的值域為,命題函數(shù)是減函數(shù).若或為真命題,且為假命題,則實數(shù)的取值范圍是.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】符號表示不大于x的最大整數(shù),例如:.
(1)解下列兩個方程;
(2)設(shè)方程: 的解集為A,集合,,求實數(shù)k的取值范圍;
(3)求方程的實數(shù)解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com