【題目】已知向量 =(cos ,sin ), =(cos ,﹣sin ),函數(shù)f(x)= ﹣m| + |+1,x∈[﹣ , ],m∈R.
(1)當(dāng)m=0時,求f( )的值;
(2)若f(x)的最小值為﹣1,求實數(shù)m的值;
(3)是否存在實數(shù)m,使函數(shù)g(x)=f(x)+ m2 , x∈[﹣ , ]有四個不同的零點?若存在,求出m的取值范圍;若不存在,說明理由.

【答案】
(1)解: =(cos ,sin )(cos ,﹣sin )=cos cos ﹣sin sin =cos( + )=cos2x,

當(dāng)m=0時,f(x)= +1=cos2x+1,

則f( )=cos(2× )+1=cos +1=


(2)解:∵x∈[﹣ ],

∴| + |= = =2cosx,

則f(x)= ﹣m| + |+1=cos2x﹣2mcosx+1=2cos2x﹣2mcosx,

令t=cosx,則 ≤t≤1,

則y=2t2﹣2mt,對稱軸t= ,

① 當(dāng) ,即m<1時,

當(dāng)t= 時,函數(shù)取得最小值此時最小值y= ﹣m=﹣1,得m= (舍),

②當(dāng) ≤1,即m<1時,

當(dāng)t= 時,函數(shù)取得最小值此時最小值y=﹣ =﹣1,得m=

③當(dāng) >1,即m>2時,

當(dāng)t=1時,函數(shù)取得最小值此時最小值y=2﹣2m=﹣1,得m= (舍),

綜上若f(x)的最小值為﹣1,則實數(shù)m=


(3)解:令g(x)=2cos2x﹣2mcosx+ m2=0,得cosx= ,

∴方程cosx= 在x∈[﹣ ]上有四個不同的實根,

,得 ,則 ≤m<

即實數(shù)m的取值范圍是 ≤m<


【解析】(1)利用向量數(shù)量積的公式化簡函數(shù)f(x)即可.(2)求出函數(shù)f(x)的表達式,利用換元法結(jié)合一元二次函數(shù)的最值性質(zhì)進行討論求解即可.(3)由g(x)=0得到方程的根,利用三角函數(shù)的性質(zhì)進行求解即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】蘭州一中在世界讀書日期間開展了書香校園系列讀書教育活動。為了解本校學(xué)生課外閱讀情況,學(xué)校隨機抽取了100名學(xué)生對其課外閱讀時間進行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時間不低于60分鐘的學(xué)生稱為讀書迷,低于60分鐘的學(xué)生稱為非讀書迷

非讀書迷

讀書迷

合計

15

45

(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書迷”與性別有關(guān)?

2利用分層抽樣從這100名學(xué)生的讀書迷”中抽取8名進行集訓(xùn),從中選派2名參加蘭州市讀書知識比賽,求至少有一名男生參加比賽的概率。

附:

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 過橢圓 ()的短軸端點, , 分別是圓與橢圓上任意兩點且線段長度的最大值為3.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點作圓的一條切線交橢圓 兩點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的五面體中,面為直角梯形, ,平面 平面, ADE是邊長為2的正三角形.

1)證明: 平面;

2)求點B到平面ACF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDEF中,四邊形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H為BC的中點.

(1)求證:FH∥平面EDB;
(2)求證:AC⊥平面EDB;
(3)解:求二面角B﹣DE﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:
12=1
12﹣22=﹣3
12﹣22+32=6
12﹣22+32﹣42=﹣10

照此規(guī)律,第n個等式可為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=﹣ x3+ x2+2ax.
(1)若f(x)在( ,+∞)上是單調(diào)減函數(shù),求實數(shù)a的取值范圍.
(2)當(dāng)0<a<2時,f(x)在[1,4]上的最小值為﹣ ,求f(x)在該區(qū)間的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,函數(shù)f(x)═log2 +a).
(1)若f(1)<2,求實數(shù)a的取值范圍;
(2)設(shè)函數(shù)g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],討論函數(shù)g(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓,橢圓, 為橢圓的右頂點,過原點且異于軸的直線與橢圓交于兩點, 軸的上方,直線與圓的另一交點為,直線與圓的另一交點為,

(1)若,求直線的斜率;

(2)設(shè)的面積分別為,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案