6.已知函數(shù) f(x)=sinx-xcosx.現(xiàn)有下列結(jié)論:
①f(x)是R 上的奇函數(shù);
②f(x)在[π,2π]上是增函數(shù);
③?x∈[0,π],f(x)≥0.
其中正確結(jié)論的個數(shù)為( 。
A.0B.1C.2D.3

分析 利用三角函數(shù)的奇偶性判斷①正確;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得f(x)在[π,2π]上是減函數(shù),故②錯誤;利用導(dǎo)數(shù)求得f(x)在[0,π]上是增函數(shù),f(x)≥f(0),從而得出結(jié)論.

解答 解:根據(jù) f(x)=sinx-xcosx,可得f(-x)=-sinx+xcosx=-f(x),
故函數(shù)f(x)為奇函數(shù),故①:f(x)是R 上的奇函數(shù),正確.
f(x)在[π,2π]上,f′(x)=cosx-cosx+xsinx=xsinx<0,
故函數(shù)f(x)是減函數(shù),故②不正確.
③?x∈[0,π],f′(x)=xsinx>0,故f(x)是增函數(shù),
故f(x)的最小值為f(0)=0,∴f(x)≥0,故③正確,
故選:C.

點(diǎn)評 本題主要考查三角函數(shù)的奇偶性和單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知全集U={x|x2-2x-3≤0},集合M={y|x2+y2=1},則∁UM=( 。
A.(-∞,-1)∪(1,+∞)B.(1,3]C.[-1,1]D.[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若{an}為等差數(shù)列,Sn是其前n項(xiàng)的和,且${S_{11}}=\frac{22}{3}π,\{{b_n}\}$為等比數(shù)列,且bn>0,${b_5}•{b_7}=\frac{π^2}{4}$,則tan(a6+b6)的值為( 。
A.$\sqrt{3}$B.$±\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.±$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax+lnx,其中a∈R.
(Ⅰ)若f(x)在區(qū)間[1,2]上為增函數(shù),求a的取值范圍;
(Ⅱ)當(dāng)a=-e時,
(ⅰ)證明:f(x)+2≤0;
(ⅱ)試方程|f(x)|=$\frac{lnx}{x}$+$\frac{3}{2}$是否有實(shí)數(shù)解,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.把能夠?qū)AO:x2+y2=9的周長和面積同時分為相等的兩部分的函數(shù)稱為圓O的“圓夢函數(shù)”,則下列函數(shù)不是圓O的“圓夢函數(shù)”的是( 。
A.f(x)=x3B.$f(x)=tan\frac{x}{2}$C.f(x)=ln[(4-x)(4+x)]D.f(x)=(ex+e-x)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)$y=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-2x$的圖象與函數(shù)y=k的圖象恰有三個不同的交點(diǎn),則實(shí)數(shù)k的取值范圍為( 。
A.$[{-\frac{10}{3},\frac{7}{6}}]$B.$({-\frac{10}{3},\frac{7}{6}})$C.$[{\frac{7}{6},+∞})$D.$({-\frac{11}{6},\frac{7}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.對于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-1)f′(x)≤0,則必有( 。
A.f(-3)+f(3)<2f(1)B.f(-3)+f(7)>2f(1)C.f(-3)+f(3)≤2f(1)D.f(-3)+f(7)≥2f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=xex,現(xiàn)有下列五種說法:
①函數(shù)f(x)為奇函數(shù);
②函數(shù)f(x)的減區(qū)間為(-∞,1),增區(qū)間為(1,+∞);
③函數(shù)f(x)的圖象在x=0處的切線的斜率為1;
④函數(shù)f(x)的最小值為$-\frac{1}{e}$.
其中說法正確的序號是③④(請寫出所有正確說法的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)的導(dǎo)函數(shù)圖象如圖所示,若△ABC為鈍角三角形,且∠C為鈍角,則一定成立的是( 。
A.f(cosA)<f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(cosB)D.f(sinA)>f(sinB)

查看答案和解析>>

同步練習(xí)冊答案