分析 (1)由數(shù)列{an}的遞推公式依次求出a1,a2,a3;
(2)根據(jù)a1,a2,a3值的結(jié)構(gòu)特點猜想{an}的通項公式,再用數(shù)學歸納法①驗證n=1成立,②假設(shè)n=k時命題成立,證明當n=k+1時命題也成立.
解答 解:(1)∵a1=S1=$\frac{{a}_{1}}{2}$+$\frac{1}{{a}_{1}}$-1,
∴a1=-1±$\sqrt{3}$.
又∵an>0,
∴a1=$\sqrt{3}$-1.
S2=a1+a2=$\frac{{a}_{2}}{2}$+$\frac{1}{{a}_{2}}$-1,
∴a2=$\sqrt{5}$-$\sqrt{3}$.
S3=a1+a2+a3=$\frac{{a}_{3}}{2}$+$\frac{1}{{a}_{3}}$-1,
∴a3=$\sqrt{7}$-$\sqrt{5}$.
(2)由(1)猜想an=$\sqrt{2n+1}$-$\sqrt{2n-1}$,n∈N+.
下面用數(shù)學歸納法加以證明:
①當n=1時,由(1)知a1=$\sqrt{3}$-1成立.
②假設(shè)n=k(k∈N+)時,ak=$\sqrt{2k+1}$-$\sqrt{2k-1}$成立.
當n=k+1時,ak+1=Sk+1-Sk=($\frac{{a}_{k+1}}{2}$+$\frac{1}{{a}_{k+1}}$-1)-($\frac{{a}_{k}}{2}$+$\frac{1}{{a}_{k}}$-1)=$\frac{{a}_{k+1}}{2}$+$\frac{1}{{a}_{k+1}}$-$\sqrt{2k+1}$,
∴ak+12+2$\sqrt{2k+1}$ak+1-2=0
∴ak+1=$\sqrt{2(k+1)+1}$-$\sqrt{2(k+1)-1}$,
即當n=k+1時猜想也成立.
綜上可知,猜想對一切n∈N+都成立.
點評 本題是中檔題,考查數(shù)列遞推關(guān)系式的應(yīng)用,數(shù)學歸納法證明數(shù)列問題的方法,考查邏輯推理能力,計算能力.注意在證明n=k+1時用上假設(shè),化為n=k的形式.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2x+y=0 | B. | 2x-y=0 | C. | 2x+y=0(x≠0) | D. | 2x-y=0(x≠0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
X | 0 | 1 | 2 | 3 | 4 |
P | 0.1 | 0.2 | 0.4 | 0.2 | a |
A. | a=0.1 | B. | P(x≥2)=0.7 | C. | P(x≥3)=0.4 | D. | P(x<2)=0.3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a=$\frac{1}{2}$ | B. | a>1或a=$\frac{1}{2}$ | C. | $\frac{1}{2}$≤a<1 | D. | $\frac{1}{2}$<a<1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
所用的時間(天數(shù)) | 10 | 11 | 12 | 13 |
通過公路l的頻數(shù) | 20 | 40 | 20 | 20 |
通過公路2的頻數(shù) | 10 | 40 | 40 | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com