19.f(x)=ax2+bx+c(a≠0).
(Ⅰ)f(x)=x的二實(shí)根x1,x2,且0<x1<x2<$\frac{1}{a}$對(duì)x∈(0,x1),比較f(x)與x1的大小;
(Ⅱ)若|f(x)|<1的解集(-1,3),求a的范圍.

分析 (Ⅰ)作差,通過x的范圍,判斷出f(x)-x1<0,從而比較其大小即可;
(Ⅱ)通過討論a的范圍,得到關(guān)于a,b,c的不等式組,求出a的范圍取并集即可.

解答 解:(Ⅰ)∵f(x)-x=a(x-x1)(x-x2),
∴f(x)=a(x-x1)(x-x2)+x,
∴f(x)-x1=a(x-x1)(x-x2)+(x-x1)=(x-x1)[a(x-x2)+1],
∵$0<{x_1}<{x_2}<\frac{1}{a}\;\;\;\;\;∴-\frac{1}{a}<x-{x_2}<0$,
∵a>0∴a(x-x1)+1>0x-x1<0,
∴f(x)-x1<0∴f(x)<x1…(6分)
(Ⅱ)①a>0,ax2+bx+c<1,
解集(-1,3)且f(x)min>-1,
∴$\left\{\begin{array}{l}-1+3=-\frac{a}\\-1×3=\frac{c-1}{a}\end{array}\right.\;\;\;\;\;∴\left\{\begin{array}{l}b=-2a\\ c=-3a+1\end{array}\right.$,
∴f(x)=ax2-2ax+1-3a,
∴f(x)min=a-2a+1-3a>-1,
∴$0<a<\frac{1}{2}$…(10分)
②若a<0,則-ax2-bx-c<1解集(-1,3)且fmax(x)<1,
∴$\left\{\begin{array}{l}-\frac{a}=-1+3\\ \frac{c+1}{a}=-1×3\end{array}\right.\;\;\;\;\;\left\{\begin{array}{l}b=-2a\\ c=-3a=1\end{array}\right.$,
∴f(x)=ax2-2ax-3a-1,
∴f(x)max=a-2a-3a-1<1,
∴$-\frac{1}{2}<a<0$
綜上述$-\frac{1}{2}<a<0$或$0<a<\frac{1}{2}$…(12分)

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查分類討論思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合M={y|y=x2},用自然語言描述M應(yīng)為( 。
A.函數(shù)y=x2的函數(shù)值組成的集合B.函數(shù)y=x2的自變量的值組成的集合
C.函數(shù)y=x2的圖象上的點(diǎn)組成的集合D.以上說法都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓C:x2+y2-2x+4y-4=0,直線l的斜率為1,與圓交于A、B兩點(diǎn).
(1)若直線l經(jīng)過圓C的圓心,求出直線的方程;
(2)當(dāng)直線l平行移動(dòng)的時(shí)候,求△CAB面積的最大值以及此時(shí)直線l的方程;
(3)是否存在直線l,使以線段AB為直徑的圓過原點(diǎn)?若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知在△ABC中,∠C=90°,M是邊BC的中點(diǎn),AC=1.若sinB=$\frac{1}{3}$,則AM=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=1+$\frac{{{2^{x+1}}}}{{{2^x}+1}}$+sinx在區(qū)間[-k,k](k>0)上的值域?yàn)閇m,n],則m+n等于( 。
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a,b,c是實(shí)數(shù),寫出命題“若a+b+c=0,則a,b,c中至少有兩個(gè)負(fù)數(shù)”的等價(jià)命題:若a,b,c中至多有1個(gè)非負(fù)數(shù),則a+b+c≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某化工廠生產(chǎn)某種產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸時(shí),每年的生產(chǎn)成本y萬元與年產(chǎn)量x噸之間的關(guān)系可可近似地表示為y=$\frac{1}{10}{x^2}$-30x+4000.
(1)若每年的生產(chǎn)總成本不超過2000萬元,求年產(chǎn)量x的取值范圍;
(2)求年產(chǎn)量為多少噸時(shí),每噸的平均成本最低,并求每噸的最低成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.斜率為k的直線y-4=-k(x+3)所過的定點(diǎn)是( 。
A.(-3,4)B.(-3,-4)C.(3,4)D.(3,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)$f(x)=3sin({ωx-\frac{π}{6}})$(ω>0)和g(x)=2cos(2x+φ)+1的圖象的對(duì)稱軸完全相同,若$x∈[{0\;,\;\;\frac{π}{4}}]$,則f(x)的取值范圍是[-$\frac{3}{2}$,$\frac{3\sqrt{3}}{2}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案