精英家教網 > 高中數學 > 題目詳情
5.已知遞增數列{an}滿足a1=1,|an+1-an|=pn,n∈N*.且a1,2a2,3a3成等差數列,則實數P的值為( 。
A.0B.$\frac{1}{3}$C.$\frac{1}{3}$或0D.3

分析 根據{an}是遞增數列,|an+1-an|=pn,可得an+1-an=pn且a1,2a2,3a3成等差數列,即可求出實數P的值.

解答 解:由題意,{an}是遞增數列,|an+1-an|=pn,可得an+1-an=pn,p>0.
∵a1=1,
∴a2=1+p,則a3=1+p+p2
∵a1,2a2,3a3成等差數列,
∴4a2=a1+3a3,
即4+4p=4+3p+3p2
解得:p=$\frac{1}{3}$或p=0(舍去)
故選:B.

點評 本題考查了數列的遞推計算和等差數列的中項的性質,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

15.設函數f(x)=$\sqrt{3}$sin(2ωx-$\frac{π}{3}$)(ω>0),直線y=$\sqrt{3}$與函數f(x)圖象相鄰兩交點的距離為π.
(1)求ω的值;
(2)若g(x)=af(x)+b在[0,$\frac{π}{2}}$]上的最大值為$\frac{5}{2}$+$\sqrt{3}$,最小值為1,求a+b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.函數f(x)=ax-1-2(a>0,a≠1)的圖象恒過定點A,若點A在一次函數$y=\frac{mx-1}{n}$的圖象上,其中m>0,n>0,則$\frac{1}{m}+\frac{2}{n}$的最小值為( 。
A.4B.5C.6D.$3+2\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知f(x)=ax-lnx,其中x∈(0,e](e是自然對數的底數),
(1)當a=1時,求f(x)的單調區(qū)間、極值;
(2)是否存在a∈R,使f(x)的最小值是3,若存在求出a的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知集合P={x|x2-2x≥0},Q={x||x-1|≤2},則P∩Q={x|-1≤x≤0或2≤x≤3},(∁RP)∪Q={x|-1≤x≤3}.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.已知函數f(x)=ax2-(a+3)x-a.
(1)當a=1時,求函數y=f(x)的單調遞增區(qū)間;
(2)若對任意x1,x2∈(0,+∞),(x1-x2)(f(x1)-f(x2))<0恒成立,求實數a的取值范圍;
(3)當a>0時,若y=f(x)在區(qū)間[0,2]上的最小值為-5,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.以直角坐標系的原點為極點,x軸正半軸為極軸建立坐標系,直線l的參數方程為:$\left\{\begin{array}{l}x=t+4\\ y=kt\end{array}\right.$(t是參數,k∈R),圓C的極坐標方程為:p=4cosθ,則直線l與圓C的位置關系為相交.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.如圖所示的程序框圖的算符源于我國古代的“中國剩余定理”,用N≡n(modm)表示正整數N除以正整數m后的余數為n,例如:7≡1(mod3),執(zhí)行該程序框圖,則輸出的n的值為( 。
A.19B.20C.21D.22

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知函數f(x)=$\left\{\begin{array}{l}\frac{{{2^x}+2}}{2},x≤1\\|ln({x-1})|,x>1\end{array}$,則函數F(x)=f[f(x)]-af(x)-$\frac{3}{2}$的零點個數是4個時,下列選項是a的取值范圍的子集的是( 。
A.$({\frac{1}{2},+∞})∪\left\{{\frac{ln2}{2}}\right\}$B.$[{\frac{ln2}{2},+∞})$C.$({0,\frac{1}{2}})∪\left\{{\frac{ln2}{2}}\right\}$D.$[{\frac{ln2}{2},\frac{1}{2}})$

查看答案和解析>>

同步練習冊答案