分析 根據(jù)題意化簡$\frac{C_x^3}{{{{(C_x^1)}^2}}}$,利用基本不等式即可求出它的最小值.
解答 解:根據(jù)題意,x>0時,
$\frac{C_x^3}{{{{(C_x^1)}^2}}}$=$\frac{x(x-1)(x-2)}{{6x}^{2}}$
=$\frac{{x}^{2}-3x+2}{6x}$
=$\frac{x}{6}$+$\frac{1}{3x}$-$\frac{1}{2}$≥2$\sqrt{\frac{x}{6}•\frac{1}{3x}}$-$\frac{1}{2}$
=$\frac{\sqrt{2}}{3}$-$\frac{1}{2}$,
當且僅當$\frac{x}{6}$=$\frac{1}{3x}$,即可x=$\sqrt{2}$時取“=”,
所以$\frac{C_x^3}{{{{(C_x^1)}^2}}}$的最小值是$\frac{\sqrt{2}}{3}$-$\frac{1}{2}$.
故答案為:$\frac{\sqrt{2}}{3}$-$\frac{1}{2}$.
點評 本題考查了組合數(shù)公式的應用問題,也考查了利用基本不等式求最值的應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com