A. | (-∞,4) | B. | (-∞,4] | C. | (-∞,5) | D. | (-∞,5] |
分析 要使函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù),我們可以轉(zhuǎn)化為f′(x)≤0在區(qū)間(1,+∞)上恒成立的問(wèn)題來(lái)求解,然后利用二次函數(shù)的單調(diào)區(qū)間于對(duì)稱軸的關(guān)系來(lái)解答也可達(dá)到目標(biāo).
解答 解:∵函數(shù)$f(x)=ax-\frac{1}{2}{x^2}-4lnx$,在區(qū)間[1,+∞)上為減函數(shù),
∴f′(x)=-$\frac{4}{x}$-x+a=$\frac{-{x}^{2}+ax-4}{x}$,
由f(x)在區(qū)間(1,+∞)上是減函數(shù),可得-x2+ax-4≤0在區(qū)間[1,+∞)上恒成立
可得△≤0或$\left\{\begin{array}{l}{\frac{a}{2}≤1}\\{a-5≤0}\end{array}\right.$,即a2-16≤0或a≤2.
解得-4≤a≤4或a≤2,
故a的取值范圍為:(-∞,4].
故選:B.
點(diǎn)評(píng) 本題以函數(shù)為載體,綜合考查利用函數(shù)的導(dǎo)數(shù)來(lái)解決有關(guān)函數(shù)的單調(diào)性,考查已知函數(shù)的單調(diào)性的條件下怎樣求解參數(shù)的范圍問(wèn)題,考查分類(lèi)討論,函數(shù)與方程,等數(shù)學(xué)思想與方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $4+2\sqrt{2}$ | B. | $4-2\sqrt{2}$ | C. | $2+\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | $\frac{4}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com