10.已知xy>0,則$\frac{y}{x+y}+\frac{2x}{2x+y}$的最小值為( 。
A.$4+2\sqrt{2}$B.$4-2\sqrt{2}$C.$2+\sqrt{2}$D.1

分析 xy>0,則$\frac{y}{x+y}+\frac{2x}{2x+y}$=$\frac{1}{\frac{x}{y}+1}$+$\frac{2×\frac{x}{y}}{2×\frac{x}{y}+1}$,令$\frac{x}{y}$=t>0,則$\frac{1}{t+1}$+$\frac{2t}{2t+1}$=f(t),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值即可得出.

解答 解:∵xy>0,則$\frac{y}{x+y}+\frac{2x}{2x+y}$=$\frac{1}{\frac{x}{y}+1}$+$\frac{2×\frac{x}{y}}{2×\frac{x}{y}+1}$,
令$\frac{x}{y}$=t>0,則$\frac{1}{t+1}$+$\frac{2t}{2t+1}$=f(t),
f′(t)=$\frac{-1}{(t+1)^{2}}$+$\frac{2}{(2t+1)^{2}}$=$\frac{2(t+\frac{\sqrt{2}}{2})(t-\frac{\sqrt{2}}{2})}{(t+1)^{2}(2t+1)^{2}}$,
可知:當(dāng)t=$\frac{\sqrt{2}}{2}$時,函數(shù)f(t)取得極小值即最小值,$f(\frac{\sqrt{2}}{2})$=4-2$\sqrt{2}$,
故選:B.

點評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.命題p:?x∈R,x2+ax+a2≥0;命題q:?x∈R,sinx+cosx=2,則下列命題中為真命題的是( 。
A.(¬p)∧(¬q)B.p∧qC.(¬p)∨qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,已知數(shù)列$\left\{{\sqrt{S_n}}\right\}$是首項為1,公差為1的等差數(shù)列.
(Ⅰ) 求數(shù)列{an}的通項公式;
(Ⅱ)令bn=$\frac{1}{{\sqrt{{a_n}{S_{2n+1}}}+\sqrt{{a_{n+1}}{S_{2n-1}}}}}$,若不等式b1+b2+b3+…+bn≥$\frac{m}{{\sqrt{2n+1}+1}}$對任意n∈N*都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)$a={log_{\frac{1}{3}}}\frac{1}{2},b={log_{\frac{1}{2}}}\frac{1}{3},c={log_3}\frac{4}{3}$,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知t>0,關(guān)于x的方程$\sqrt{2}-|x|=\sqrt{t-{x^2}}$,則這個方程的實數(shù)的個數(shù)是( 。
A.0或2B.0或2或3或4C.0或2或4D.0或1或2或3或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若存在正實數(shù)x,y,z滿足$\frac{z}{2}$≤x≤ez且zln$\frac{y}{z}$=x,則ln$\frac{y}{x}$的取值范圍為( 。
A.[1,+∞)B.[1,e-1]C.(-∞,e-1]D.[1,$\frac{1}{2}$+ln2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)$f(x)=ax-\frac{1}{2}{x^2}-4lnx$在區(qū)間[1,+∞)上為減函數(shù),則實數(shù)a的取值范圍是(  )
A.(-∞,4)B.(-∞,4]C.(-∞,5)D.(-∞,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=-x3+ax,其中a∈R,$g(x)=-\frac{1}{2}{x^{\frac{3}{2}}}$,
(1)求函數(shù)f(x)的單調(diào)性;
(2)若f(x)<g(x)在(0,1]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知0<a1<a2<a3,則使得${({1-{a_i}x})^2}<1({i=1,2,3})$都成立的x的取值范圍是( 。
A.$({0,\frac{1}{a_3}})$B.$({0,\frac{2}{a_3}})$C.$({0,\frac{1}{a_1}})$D.$({0,\frac{2}{a_1}})$

查看答案和解析>>

同步練習(xí)冊答案