19.已知點(diǎn)A(-3,0),B(0,2)在橢圓$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$上,則橢圓的標(biāo)準(zhǔn)方程為( 。
A.$\frac{x^2}{3}+\frac{y^2}{2}=1$B.$\frac{x^2}{9}+\frac{y^2}{4}=1$C.$\frac{x^2}{3}+{y^2}=1$D.$\frac{x^2}{5}+\frac{y^2}{4}=1$

分析 根據(jù)題意,將點(diǎn)的坐標(biāo)代入橢圓方程可得$\left\{\begin{array}{l}{\frac{9}{{m}^{2}}=1}\\{\frac{4}{{n}^{2}}=1}\end{array}\right.$,解得m2、n2值,將其值代入橢圓方程即可得答案.

解答 解:根據(jù)題意,點(diǎn)A(-3,0),B(0,2)在橢圓$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$上,
則有$\left\{\begin{array}{l}{\frac{9}{{m}^{2}}=1}\\{\frac{4}{{n}^{2}}=1}\end{array}\right.$,解得m2=9,n2=4,
即橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1;
故選:B.

點(diǎn)評 本題考查橢圓的幾何性質(zhì),需要用待定系數(shù)法分析.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)F作某一漸近線的垂線,分別與兩漸近線相交于A,B兩點(diǎn),若$\frac{|AF|}{|BF|}=\frac{1}{2}$,則雙曲線的離心率為2或$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知各項(xiàng)均為正數(shù)的數(shù)列{an},其前n項(xiàng)和為Sn.點(diǎn)(an,Sn)在函數(shù)f(x)=2x-1圖象上.?dāng)?shù)列{bn}滿足:bn=log2an+1
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若cn=$\frac{_{n}}{{a}_{n}}$,數(shù)列{cn}的前n項(xiàng)和Tn,求證:Tn+$\frac{n}{{2}^{n-1}}$≥2恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知關(guān)于x的方程$\sqrt{{x^2}-1}$=ax-2有且只有一個(gè)解,則實(shí)數(shù)a的取值范圍為[-$\sqrt{5}$,-1)∪(1,$\sqrt{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤2\\ x-y≤2\\ 0≤x≤1\end{array}\right.$則z=2x+4y的最大值是( 。
A.-4B.2C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知△ABC中,$AB=1,BC=\sqrt{3},BD$是AC邊上的中線.
(1)求$\frac{sin∠ABD}{sin∠CBD}$;
(2)若$BD=\frac{{\sqrt{7}}}{2}$,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知△ABC中,$AB=1,BC=\sqrt{3},BD$是AC邊上的中線.
(1)求$\frac{sin∠ABD}{sin∠CBD}$; 
(2)若$∠A=\frac{2π}{3}$,求BD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)(1,$\frac{\sqrt{3}}{2}$),且離心率為$\frac{\sqrt{3}}{2}$
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)P(4,0),橢圓內(nèi)部是否存在一個(gè)定點(diǎn),過此點(diǎn)的直線交橢圓于M,N兩點(diǎn),且$\overrightarrow{PM}$•$\overrightarrow{PN}$=12恒成立,若存在,求出此點(diǎn),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知三棱錐S-ABC,底面△ABC為邊長為2的正三角形,側(cè)棱SA=SC=$\sqrt{2}$,SB=2
(1)求證:AC⊥SB;
(2)A點(diǎn)到平面SBC的距離.

查看答案和解析>>

同步練習(xí)冊答案