分析 (1)利用△ABD的面積與△CBD的面積相等,即$\frac{1}{2}•AB•BD•sin∠ABD=\frac{1}{2}•BC•BD•sin∠CBD$,即可求$\frac{sin∠ABD}{sin∠CBD}$;
(2)用余弦定理,BD2+AD2-2•BD•AD•cos∠ADB=AB2,①,BC2=BD2+AD2-2•BD•AD•cos∠ADB,…②,①+②得AB2+BC2=2BD2+2AD2,求出AD,即可求AC的長.
解答 解:(1)因?yàn)锽D是AC邊上的中線,
所以△ABD的面積與△CBD的面積相等,
即$\frac{1}{2}•AB•BD•sin∠ABD=\frac{1}{2}•BC•BD•sin∠CBD$,
所以$\frac{sin∠ABD}{sin∠CBD}=\frac{BC}{AB}=\sqrt{3}$. …(5分)
(2)在△ABC中,因?yàn)锳B=1,$BC=\sqrt{3}$,
利用余弦定理,BD2+AD2-2•BD•AD•cos∠ADB=AB2,①,
BC2=BD2+AD2-2•BD•AD•cos∠ADB,…②
①+②得AB2+BC2=2BD2+2AD2,所以$AD=\frac{1}{2}$,所以AC=1. …(12分)
點(diǎn)評 本題考查余弦定理,考查三角形面積的計算,考查學(xué)生的計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2<x<2} | B. | {x|-2<x<3} | C. | {x|-1<x<3} | D. | {x|-1<x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{3}+\frac{y^2}{2}=1$ | B. | $\frac{x^2}{9}+\frac{y^2}{4}=1$ | C. | $\frac{x^2}{3}+{y^2}=1$ | D. | $\frac{x^2}{5}+\frac{y^2}{4}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2-i | B. | 2+i | C. | -2-i | D. | -2+i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com