已知?jiǎng)又本與橢圓:交于兩不同點(diǎn),且的面積,其中為坐標(biāo)原點(diǎn).
(Ⅰ)證明:和均為定值;
(Ⅱ)設(shè)線段的中點(diǎn)為,求的最大值;
(Ⅲ)橢圓上是否存在三點(diǎn),使得?若存在,判斷的形狀;若不存在,請(qǐng)說(shuō)明理由.
解析:(Ⅰ)當(dāng)直線的斜率不存在時(shí),兩點(diǎn)關(guān)于軸對(duì)稱,則,
由在橢圓上,則,而,則
于是,.
當(dāng)直線的斜率存在,設(shè)直線為,代入可得
,即,,即
,
則,滿足
,
,
綜上可知,.
(Ⅱ))當(dāng)直線的斜率不存在時(shí),由(Ⅰ)知
當(dāng)直線的斜率存在時(shí),由(Ⅰ)知,
,
,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,綜上可知的最大值為。
(Ⅲ)假設(shè)橢圓上存在三點(diǎn),使得,
由(Ⅰ)知,
.
解得,,
因此只能從中選取,只能從中選取,
因此只能從中選取三個(gè)不同點(diǎn),而這三點(diǎn)的兩兩連線必有一個(gè)過(guò)原點(diǎn),這與相矛盾,
故橢圓上不存在三點(diǎn),使得。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知?jiǎng)又本與橢圓C: 交于P、Q兩不同點(diǎn),且△OPQ的面積=,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)證明和均為定值;
(Ⅱ)設(shè)線段PQ的中點(diǎn)為M,求的最大值;
(Ⅲ)橢圓C上是否存在點(diǎn)D,E,G,使得?若存在,判斷△DEG的形狀;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省河西五市高三第二次(5月)聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N (點(diǎn)M在點(diǎn)N的右側(cè)),且。橢圓D:的焦距等于,且過(guò)點(diǎn)
( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過(guò)點(diǎn)M的動(dòng)直線與橢圓D交于A、B兩點(diǎn),若點(diǎn)N在以弦AB為直徑的圓的外部,求直線斜率的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)
已知?jiǎng)又本與橢圓C: 交于P、Q兩不同點(diǎn),且△OPQ的面積=,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)證明和均為定值;
(Ⅱ)設(shè)線段PQ的中點(diǎn)為M,求的最大值;
(Ⅲ)橢圓C上是否存在點(diǎn)D,E,G,使得?若存在,判斷△DEG的形狀;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
平面內(nèi)與兩定點(diǎn)連線的斜率之積等于常數(shù)(的點(diǎn)的軌跡,連同兩點(diǎn)所成的曲線為C.
(Ⅰ)求曲線C的方程,并討論C的形狀;
(II)設(shè),,對(duì)應(yīng)的曲線是,已知?jiǎng)又本與橢圓交于、兩不同點(diǎn),且,其中O為坐標(biāo)原點(diǎn),探究 是否為定值,寫出解答過(guò)程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com