3.已知A(5,3),F(xiàn)是拋物線y2=4x的焦點,P是拋物線上的動點,則△PAF周長的最小值為( 。
A.9B.10C.11D.15

分析 利用拋物線的簡單性質(zhì),轉(zhuǎn)化求解即可.

解答 解:F是拋物線y2=4x的焦點(1,0),A(5,3)在拋物線內(nèi)部,
FA是定值,F(xiàn)A=$\sqrt{(5-1)^{2}+{3}^{2}}$=5.
P是拋物線上的動點,則(|PA|+|PF|)min=6.
△PAF周長的最小值為:6+5=11.
故選:C.

點評 本題考查拋物線的簡單性質(zhì)的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力..

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z滿足(1+i)z=3+i,其中i是虛數(shù)單位,則|z|=(  )
A.10B.$\sqrt{10}$C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)$a={({\frac{1}{2}})^{\frac{1}{3}}}$,$b={log_{\frac{1}{3}}}2$,$c=\frac{1}{sin1}$,則( 。
A.a>b>cB.a>c>bC.b>c>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:

(Ⅰ)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值的大小及方差的大。ú灰笥嬎愠鼍唧w值,給出結(jié)論即可);
(Ⅱ)若得分不低于80分,則認(rèn)為該用戶對此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對此種交通方式“不認(rèn)可”,請根據(jù)此樣本完成此2×2列聯(lián)表,并據(jù)此樣本分析是否有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān);
  A B 合計
 認(rèn)可   
 不認(rèn)可   
 合計   
(Ⅲ)若從此樣本中的A城市和B城市各抽取1人,則在此2人中恰有一人認(rèn)可的條件下,此人來自B城市的概率是多少?
附:參考數(shù)據(jù):
(參考公式:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若集合A={x|1≤x≤2},B={x|x2-3x+2=0},則A∩B等于( 。
A.{x|1≤x≤2}B.(1,2)C.{1,2}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右頂點為A,O為坐標(biāo)原點,以A為圓心的圓與雙曲線C的一條漸近線交于P、Q兩點,若$∠PAQ=\frac{π}{3}$,且$|PQ|=\frac{{\sqrt{3}}}{3}a$,則雙曲線C的漸近線方程為$y=±\frac{{\sqrt{3}}}{3}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.同時具有性質(zhì):“①最小正周期是π;②圖象關(guān)于直線$x=\frac{π}{3}$對稱;③在$[{-\frac{π}{6},\frac{π}{3}}]$上是增函數(shù).”的一個函數(shù)為( 。
A.$y=sin({\frac{x}{2}+\frac{π}{6}})$B.$y=cos({\frac{x}{2}-\frac{π}{6}})$C.$y=cos({2x+\frac{π}{6}})$D.$y=sin({2x-\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于6+1.5πcm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.給出下列四個命題:
①?x0∈R,ln(x02+1)<0;
②?x>2,x2>2x;
③?α,β∈R,sin(α-β)=sin α-sin β;
④若q是¬p成立的必要不充分條件,則¬q是p成立的充分不必要條件.
其中真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案