5.已知x≥y>0.
(1)若xy=1,|x-1|+|y-1|≥1,求x的取值范圍.
(2)若x+y=1,證明:($\frac{1}{{x}^{2}}$-1)•($\frac{1}{{y}^{2}}$-1)≥9.

分析 (1)由條件可得x≥1,0<y≤1,原不等式|x-1|+|y-1|≥1化為x2-x-1≥0,即可得到x的范圍;
(2)由條件將原不等式左邊化為$\frac{(x+y)^{2}-({x}^{2}+{y}^{2})+{x}^{2}{y}^{2}}{{x}^{2}{y}^{2}}$=$\frac{2}{xy}$+1,運用均值不等式即可得證.

解答 解:(1)由x≥y>0,xy=1,可得x≥1,0<y≤1,
不等式|x-1|+|y-1|≥1化為x-1+1-y≥1,即為y≤x-1,
由y=$\frac{1}{x}$,可得x2-x-1≥0,
解得x≥$\frac{\sqrt{5}+1}{2}$或x≤$\frac{\sqrt{5}-1}{2}$,
由x≥1,可得x的取值范圍是[$\frac{\sqrt{5}+1}{2}$,+∞);
(2)由x+y=1,1>x≥y>0,
可得($\frac{1}{{x}^{2}}$-1)•($\frac{1}{{y}^{2}}$-1)=$\frac{(1-{x}^{2})(1-{y}^{2})}{{x}^{2}{y}^{2}}$
=$\frac{1-({x}^{2}+{y}^{2})+{x}^{2}{y}^{2}}{{x}^{2}{y}^{2}}$=$\frac{(x+y)^{2}-({x}^{2}+{y}^{2})+{x}^{2}{y}^{2}}{{x}^{2}{y}^{2}}$
=$\frac{2}{xy}$+1≥$\frac{2}{(\frac{x+y}{2})^{2}}$+1=8+1=9.
即有原不等式成立.

點評 本題考查不等式的解法和不等式的證明,注意運用二次不等式的解法和均值不等式,考查化簡整理的運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.試用你學(xué)到的證明方法求證:已知a>b>0,m>0,則$\frac{b+m}{a+m}>\frac{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在伸縮變換$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{1}{2}y}\end{array}\right.$的作用后,直線y=2x變成直線( 。
A.y=4xB.y=$\frac{1}{2}$xC.y=xD.y=$\frac{1}{4}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若x∈[0,+∞),則下列不等式不恒成立的是( 。
A.ex≥x+1B.ln(x+2)-ln(x+1)$<\frac{1}{x+1}$
C.$\frac{2}{π}$x+cosx≥1+sinxD.cosx≥1-$\frac{1}{2}$x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知a,b,c,d都是正數(shù),求證:$\frac{a+b+c+d}{2}≥\sqrt{ab}+\sqrt{cd}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.2011年,國際數(shù)學(xué)協(xié)會正式宣布,將每年的3月14日設(shè)為國際數(shù)學(xué)節(jié),來源是中國古代數(shù)學(xué)家祖沖之的圓周率.為慶祝該節(jié)日,某校舉辦的數(shù)學(xué)嘉年華活動中,設(shè)計了如下有獎闖關(guān)游戲:參賽選手按第一關(guān)、第二關(guān)、第三關(guān)的順序依次闖關(guān),若闖關(guān)成功,分別獲得5個、10個、20個學(xué)豆的獎勵.游戲還規(guī)定,當(dāng)選手闖過一關(guān)后,可以選擇帶走相應(yīng)的學(xué)豆,結(jié)束游戲;也可以選擇繼續(xù)闖下一關(guān),若有任何一關(guān)沒有闖關(guān)成功,則全部學(xué)豆歸零,游戲結(jié)束.設(shè)選手甲能闖過第一關(guān)、第二關(guān)、第三關(guān)的概率分別為$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,選手選擇繼續(xù)闖關(guān)的概率均為$\frac{1}{2}$,且各關(guān)之間闖關(guān)成功與否互不影響.
(Ⅰ)求選手甲第一關(guān)闖關(guān)成功且所得學(xué)豆為零的概率;
(Ⅱ)設(shè)該選手所得學(xué)豆總數(shù)為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)點P是圓x2+y2=4上的任一點,定點D的坐標(biāo)為(8,0),若點M滿足$\overrightarrow{PM}$=2$\overrightarrow{MD}$,當(dāng)點P在圓上運動時,求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.2015年中國汽車銷售遇到瓶頸,各大品牌汽車不斷加大優(yōu)惠力度.某4S店在一次促銷活動中,讓每位參與者從盒子中任取一個由0~9中任意三個數(shù)字組成的“三位遞減數(shù)”(即個數(shù)數(shù)字小于十位數(shù)字,十位數(shù)字小于百位數(shù)字).若“三位遞減數(shù)”中的三個數(shù)字之和既能被2整除又能被5整除,則可以享受5萬元的優(yōu)惠;若“三位遞減數(shù)”中的三個數(shù)字之和僅能被2整除,則可以享受3萬元的優(yōu)惠;其他結(jié)果享受1萬元的優(yōu)惠.
(1)試寫出所有個位數(shù)字為4的“三位遞減數(shù)”;
(2)若小明參加了這次汽車促銷活動,求他得到的優(yōu)惠金額X的分布列及數(shù)字期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎,抽獎方法是:從裝有2個紅球A1,A2和2個白球B1,B2的甲箱與裝有3個紅球a1,a2,a3和1個白球b1的乙箱中,各隨機摸出1個球,若摸出的2個球都是紅球則中獎,否則不中獎.
(Ⅰ)用球的標(biāo)號列出所有可能的摸出結(jié)果;
(Ⅱ)有人認(rèn)為:兩個箱子中的紅球比白球多,所以中獎的概率大于不中獎的概率,你認(rèn)為正確嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案