分析 由題意可得F,A,B的坐標(biāo),設(shè)出直線AE的方程為y=k(x+a),分別令x=-c,x=0,可得M,E的坐標(biāo),再由直線BM與y軸交于點(diǎn)N,NE=2ON,可得N的坐標(biāo),運(yùn)用三點(diǎn)共線的條件:斜率相等,結(jié)合離心率公式,即可得到所求值.
解答 解:由題意可設(shè)F(-c,0),A(-a,0),B(a,0),
令x=-c,代入橢圓方程可得y=±b$\sqrt{1-\frac{{c}^{2}}{{a}^{2}}}$=±$\frac{^{2}}{a}$,
可得P(-c,±$\frac{^{2}}{a}$),
設(shè)直線AE的方程為y=k(x+a),
令x=-c,可得M(-c,k(a-c)),令x=0,可得E(0,ka),
∵直線BM與y軸交于點(diǎn)N,NE=2ON,
∴N(0,$\frac{ka}{3}$),
由B,N,M三點(diǎn)共線,可得kBN=kBM,
即為$\frac{\frac{ka}{3}}{-a}$=$\frac{k(a-c)}{-c-a}$,
化簡可得$\frac{a-c}{a+c}$=$\frac{1}{3}$,即為a=2c,
可得e=$\frac{c}{a}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查橢圓的離心率的求法,注意運(yùn)用橢圓的方程和性質(zhì),以及直線方程的運(yùn)用和三點(diǎn)共線的條件:斜率相等,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1] | B. | [-1,0) | C. | (0,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $3\sqrt{2}$ | C. | $2\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com