【題目】已知函數(shù)(其中).
(1)當(dāng)時(shí),判斷零點(diǎn)的個(gè)數(shù)k;
(2)在(1)的條件下,記這些零點(diǎn)分別為,求證: .
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】試題分析:(1)先求導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),根據(jù)零點(diǎn)列表分析導(dǎo)函數(shù)符號(hào),進(jìn)而確定函數(shù)單調(diào)性,再根據(jù)零點(diǎn)存在定理確定函數(shù)零點(diǎn)個(gè)數(shù),(2)先根據(jù)零點(diǎn)條件化簡(jiǎn)得,令則,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,根據(jù)單調(diào)性得,即證得結(jié)論.
試題解析:(1)由題知x>0, ,
所以,由得,
當(dāng)x>時(shí), , 為增函數(shù);當(dāng)0<x<時(shí), , 為減函數(shù),
所以,
而,
所以當(dāng)時(shí), 零點(diǎn)的個(gè)數(shù)為2.
(2)由(1)知的兩個(gè)零點(diǎn)為,不妨設(shè),
于是且
兩式相減得(*), 令,
則將代入(*)得,進(jìn)而,
所以,
下面證明,其中,
即證明,設(shè),
則,令,則,
所以為增函數(shù),即為增函數(shù),
故,所以為減函數(shù),
于是,即.
所以有,從而.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只紅鈴蟲(chóng)的產(chǎn)卵數(shù)和溫度有關(guān),現(xiàn)收集了6組觀測(cè)數(shù)據(jù)如下表:
溫度 | 21 | 24 | 25 | 27 | 29 | 32 |
產(chǎn)卵數(shù)/個(gè) | 7 | 11 | 21 | 24 | 66 | 115 |
1.946 | 2.398 | 3.045 | 3.178 | 4.191 | 4.745 |
(I)以溫度為23、25、27、29的數(shù)據(jù)分別建立:①和之間線性回歸方程,②和之間線性回歸方程;
(Ⅱ)若以(Ⅰ)所得回歸方程預(yù)測(cè),得到溫度為21、32的數(shù)據(jù)如下:
溫度 | 21 | 32 |
-11.5 | 80.94 | |
1.825 | 4.857 |
試以上表數(shù)據(jù)說(shuō)明①②兩個(gè)模型,哪個(gè)擬合的效果更好.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省級(jí)示范高中高三年級(jí)對(duì)考試的評(píng)價(jià)指標(biāo)中,有“難度系數(shù)”“區(qū)分度”和“綜合”三個(gè)指標(biāo),其中,難度系數(shù),區(qū)分度,綜合指標(biāo).以下是高三年級(jí) 6 次考試的統(tǒng)計(jì)數(shù)據(jù):
i | 1 | 2 | 3 | 4 | 5 | 6 |
難度系數(shù) xi | 0.66 | 0.72 | 0.73 | 0.77 | 0.78 | 0.84 |
區(qū)分度 yi | 0.19 | 0.24 | 0.23 | 0.23 | 0.21 | 0.16 |
(I) 計(jì)算相關(guān)系數(shù),若,則認(rèn)為與的相關(guān)性強(qiáng);通過(guò)計(jì)算相關(guān)系數(shù) ,能否認(rèn)為與的相關(guān)性很強(qiáng)(結(jié)果保留兩位小數(shù))?
(II) 根據(jù)經(jīng)驗(yàn),當(dāng)時(shí),區(qū)分度與難度系數(shù)的相關(guān)性較強(qiáng),從以上數(shù)據(jù)中剔除(0.7,0.8)以外的 值,即.
(i) 寫(xiě)出剩下 4 組數(shù)據(jù)的線性回歸方程(保留兩位小數(shù));
(ii) 假設(shè)當(dāng)時(shí), 與的關(guān)系依從(i)中的回歸方程,當(dāng) 為何值時(shí),綜合指標(biāo)的值最大?
參考數(shù)據(jù):
參考公式:
相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計(jì)公式為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了反映國(guó)民經(jīng)濟(jì)各行業(yè)對(duì)倉(cāng)儲(chǔ)物流業(yè)務(wù)的需求變化情況,以及重要商品庫(kù)存變化的動(dòng)向,中國(guó)物流與采購(gòu)聯(lián)合會(huì)和中儲(chǔ)發(fā)展股份有限公司通過(guò)聯(lián)合調(diào)查,制定了中國(guó)倉(cāng)儲(chǔ)指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國(guó)倉(cāng)儲(chǔ)指數(shù)走勢(shì)情況.
根據(jù)該折線圖,下列結(jié)論正確的是
A. 2016年各月的倉(cāng)儲(chǔ)指數(shù)最大值是在3月份
B. 2017年1月至12月的倉(cāng)儲(chǔ)指數(shù)的中位數(shù)為54%
C. 2017年1月至4月的倉(cāng)儲(chǔ)指數(shù)比2016年同期波動(dòng)性更大
D. 2017年11月的倉(cāng)儲(chǔ)指數(shù)較上月有所回落,顯示出倉(cāng)儲(chǔ)業(yè)務(wù)活動(dòng)仍然較為活躍,經(jīng)濟(jì)運(yùn)行穩(wěn)中向好
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2,E,F分別是AD,PC的中點(diǎn).
(1)證明:PC⊥平面BEF;
(2)求平面BEF與平面BAP夾角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,圖①是棱長(zhǎng)為1的小正方體,圖②,③是由這樣的小正方體擺放而成.按照這樣的方法繼續(xù)擺放,由上而下分別將第1層,第2層,…,第層的小正方體的個(gè)數(shù)記為,解答下列問(wèn)題:
(1)按照要求填表:
1 | 2 | 3 | 4 | … | |
1 | 3 | 6 | _ | … |
(2)__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖),
(1)由圖中數(shù)據(jù)求a的值;
(2)若要從身高在[120,130),[130,140),[140,150]三組內(nèi)的學(xué)生中,用分層抽樣的方法選取18人參加一項(xiàng)活動(dòng),則從身高在[140,150]內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為多少?
(3)估計(jì)這所小學(xué)的小學(xué)生身高的眾數(shù),中位數(shù)(保留兩位小數(shù))及平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是定義在(-∞,+∞)上的奇函數(shù),且在[0,+∞)上為增函數(shù),
(1)求證:函數(shù)在(-∞,0)上也是增函數(shù);
(2)如果f()=1,解不等式-1<f(2x+1)≤0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中).
(1)當(dāng)時(shí),求零點(diǎn)的個(gè)數(shù)k的值;
(2)在(1)的條件下,記這些零點(diǎn)分別為,求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com