19.設(shè)復(fù)數(shù)z滿足z+i=i(2-i),則$\overline{z}$=( 。
A.1+3iB.-1+3iC.1-iD.-1+i

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:∵z+i=i(2-i),∴z=i+1.
則$\overline{z}$=1-i.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+1,x≥0\\{x^2},x<0\end{array}\right.$,則f[f(-1)]=( 。
A.0B.1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在三棱錐P-ABC中,PA,PB,PC兩兩互相垂直,且AB=4,AC=5,則BC的取值范圍是(3,$\sqrt{41}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.5位同學(xué)站成一排照相,其中甲與乙必須相鄰,且甲不能站在兩端的排法總數(shù)是(  )
A.40B.36C.32D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q是AD的中點(diǎn).
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,點(diǎn)M在線段PC上且滿足PC=3PM,求二面角M-BQ-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知四棱錐P-ABCD中,底面ABCD是菱形,PD⊥平面ABCD,E為PB上任意一點(diǎn).
(1)證明:平面EAC⊥平面PBD;
(2)試確定點(diǎn)E的位置,使得四棱錐P-ABCD的體積等于三棱錐B-ACE體積的4倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,是一個(gè)算法流程圖,當(dāng)輸入的x=5時(shí),那么運(yùn)行算法流程圖輸出的結(jié)果是( 。
A.10B.20C.25D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線y=-x+1與橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)相交于A,B兩點(diǎn),且線段AB的中點(diǎn)在直線l:x-2y=0上,橢圓G的右焦點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn)的在圓x2+y2=4上.
(Ⅰ)求橢圓G的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)C,D分別為橢圓G的右頂點(diǎn)與上頂點(diǎn),設(shè)P為第三象限內(nèi)一點(diǎn)且在橢圓G上,直線PC與y軸交于點(diǎn)M,直線PD與x軸交于點(diǎn)N,求證:四邊形CDNM的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{xn}滿足xn+2=|xn+1-xn|(n∈N*),若x1=1,x2=a(a≤1,a≠0),且xn+3=xn對(duì)于任意正整數(shù)n均成立,則數(shù)列{xn}的前2016項(xiàng)和S2016的值為( 。
A.672B.673C.1342D.1344

查看答案和解析>>

同步練習(xí)冊(cè)答案