10.在三棱錐P-ABC中,PA,PB,PC兩兩互相垂直,且AB=4,AC=5,則BC的取值范圍是(3,$\sqrt{41}$).

分析 如圖設(shè)PA、PB、PC的長分別為a、b、c,BC=m.由PA,PB,PC兩兩互相垂直,得a2+b2=16,a2+c2=25,
b2+c2=m2⇒m2=41-2a2,且a2<16,a2<25⇒-2a2>-32,⇒-2a2>-50⇒⇒-2a2>-32⇒m2=41-2a2>9
在△ABC中,$\left\{\begin{array}{l}{m<5+4}\\{4<5+m}\\{5<4+m}\end{array}\right.$⇒3<m<$\sqrt{41}$.

解答 解:如圖設(shè)PA、PB、PC的長分別為a、b、c,BC=m.∵PA,PB,PC兩兩互相垂直,
∴a2+b2=16,a2+c2=25,b2+c2=m2⇒m2=41-2a2,
a2<16,a2<25⇒-2a2>-32,⇒-2a2>-50⇒⇒-2a2>-32⇒m2=41-2a2>9
⇒m>3
在△ABC中,$\left\{\begin{array}{l}{m<5+4}\\{4<5+m}\\{5<4+m}\end{array}\right.$⇒3<m<$\sqrt{41}$
故答案為(3,$\sqrt{41}$)

點評 本題考查了空間位置關(guān)系,關(guān)鍵是把空間問題轉(zhuǎn)化為平面問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=a(x-2)ex+lnx+$\frac{1}{x}$存在唯一的極值點,且此極值大于0,則( 。
A.0≤a<$\frac{1}{e}$B.0≤a<$\frac{1}{{e}^{2}}$C.-$\frac{1}{e}$<a<$\frac{1}{{e}^{2}}$D.0≤a<$\frac{1}{e}$或a=-$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)={a^x}+\frac{1-t}{a^2}(a>0,a≠1)$是定義域為R上的奇函數(shù).
(1)求實數(shù)t的值;
(2)若f(1)>0,不等式f(x2+bx)+f(4-x)>0在x∈R上恒成立,求實數(shù)b的取值范圍;
(3)若$f(1)=\frac{3}{2}$且$h(x)={a^{2x}}+\frac{1}{{{a^{2x}}}}-2mf(x)$[1,+∞)上最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知等比數(shù)列{an}的前n項和為Sn,且S4=a5-a1
(1)求數(shù)列{an}的公比q的值;
(2)記bn=log2an+1,數(shù)列{bn}的前n項和為Tn,若T4=2b5,求數(shù)列a1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在三棱柱ABC-A1B1C1中,AB⊥平面BCC1B1,$∠BC{C_1}=\frac{π}{3},AB=B{B_1}=2,BC=1,D$為CC1的中點.
(1)求證:DB1⊥平面ABD;
(2)求點A1到平面ADB1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.正項數(shù)列{an}滿足a1=$\frac{1}{4}$,a1+a2+…+an=2anan+1,則通項an=$\frac{n}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.
(1)求某戶居民用電費用y(單位:元)關(guān)于月用電量x(單位:度)的函數(shù)解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求a,b的值;
(3)在滿足(2)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點值代替,記Y為該居民用戶1月份的用電費用,求Y的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)復(fù)數(shù)z滿足z+i=i(2-i),則$\overline{z}$=( 。
A.1+3iB.-1+3iC.1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB=2,AB=2$\sqrt{2}$.
(Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)求銳二面角D-A1C-E的余弦值.

查看答案和解析>>

同步練習(xí)冊答案